可能一開始預個pool太大(1000人玩)
221人對落150個數字
好似同100個嘅思考方法唔同
其實話簡最大(100)係best strategy既人睇到兩個TEST 最大既號碼都係大比數咁輸, 有咩感想?
best strategy唔係用嚟贏架
唔係要贏咁玩呢個Game為咩?
證明你嘅睇法好出類拔萃,只要無一個人同我諗嘅野一樣就一定我贏
諗起秋山 btw好多小學雞蛋 又小數點 又無限
諗起秋山 btw好多小學雞蛋 又小數點 又無限
試下一萬人一齊玩個game睇下啲人重會唔會講得出60-70係合理範圍
贏個條件有兩個
1. 無同人撞
2. 最大
先要符合1至會考慮2
所以首要應該係唔同人撞 如果一萬人一齊玩 得100個數字 每個數字都有人揀嘅機率會非常高
但總有啲數字多人揀 有啲數字少人揀 如果係哩個post啲人玩 100會係最多人揀嘅
亦即係100哩個數字距離符合條件1最遠
換句話說 揀100最小機會贏
揀100似乎只係有班人唔想嘥時間諗對手咩心理先會咁答
但博弈論就係要考慮對手點揀去作決定
喺哩個遊戲 越多人撐嘅數字 贏面越低 點解去到30幾頁都咁多傻鳩 睇唔透 咁多人玩game原來唔係為贏
太長唔想用中文打
The strategy of choosing 100 is a weakly dominant strategy.
Consider a player, Alice. We only need to consider two cases:
Case 1: The largest number chosen by the rest of the group is strictly less than 100. Then, Alice can always win by choosing 100, but if she may lose if she chooses a number less than 100.
Case 2: The largest number chosen by the rest of the group is 100. Then, Alice will lose no matter which number she chooses, so she is indifferent between all possible strategies.
The conclusion means that all (rational) players should choose 100, leading to a Nash equilibrium outcome in which all players gain zero point.
多謝ching 今日畀人笑我傻仔揀100
佢個答案係答緊唔同既問題
99.99999999999999999999999999999999999
無話唔比小數
頭十頁有條傻鳩比人派粒膠就玻璃心罵戰左幾頁,搞到我追post追得幾辛苦。
Between,呢個世界真係多弱智,蠢唔緊要,唔好打咁長浪費人時間丫嘛
99.99999999999999999999999999999999999
無話唔比小數
咁應該 100.000000000000000000
更大吧
其實條題目加60分會唔會過100分先
姐係例如我簡55 變115
99.99999999999999999999999999999999999
無話唔比小數
咁應該 100.000000000000000000
更大吧
係時候比拼邊個可以寫出最接近100而又細過100嘅數嘞
我先,100-10^(-99999999999999999999999999999999999)