(博奕論)北海道大學入學試題,1至100選最大數字

941 回覆
111 Like 8 Dislike
2017-06-22 22:48:21
網民齊參與 試解北海道大學超難考題

「由1到100中寫出其中一個你鍾意嘅數字。只要喺唔會同其他同學答案重覆嘅情況下,寫出最大數字嘅人就可以加60分。」有冇人知點答?
2017-06-22 22:52:50
99.99999999999999999999999999999999999

無話唔比小數

鬥多小數點後位
2017-06-22 22:53:54
100
搏大家唔敢寫
2017-06-22 22:56:21
97
2017-06-22 22:58:05
100
夠哂大未
2017-06-22 22:59:45
100
夠哂大未

已經同上面重覆
2017-06-22 23:00:05
1 for sure
2017-06-22 23:00:19
你根本就係捉我字蚤
你係庄我係閑
2017-06-22 23:01:54
有幾多人考先
2017-06-22 23:02:17
垃圾題目
2017-06-22 23:02:45
首先你要睇下試場有幾多考生
過一千人既話
老練都填100
2017-06-22 23:03:12
99.99999999999999999999999999999999999

無話唔比小數

鬥多小數點後位

係個9度點一點咪得
循環數字
2017-06-22 23:03:18
101
2017-06-22 23:03:47
首先你要睇下試場有幾多考生
過一千人既話
老練都填100

所以你咪fail左
2017-06-22 23:03:47
獎門人遊戲
2017-06-22 23:06:44
太長唔想用中文打

The strategy of choosing 100 is a weakly dominant strategy.

Consider a player, Alice. We only need to consider two cases:

Case 1: The largest number chosen by the rest of the group is strictly less than 100. Then, Alice can always win by choosing 100, but if she may lose if she chooses a number less than 100.

Case 2: The largest number chosen by the rest of the group is 100. Then, Alice will lose no matter which number she chooses, so she is indifferent between all possible strategies.

The conclusion means that all (rational) players should choose 100, leading to a Nash equilibrium outcome in which all players gain zero point.
2017-06-22 23:10:04
就算如果唔重覆先有分
一定好多人填100 有好多原因 可能睇唔明題目/想博
如果好多人考 真係睇彩數?全部重覆點算
2017-06-22 23:10:59
呢個遊戲幾好玩
可以一大班人玩抽獎時咁玩法
2017-06-22 23:16:37
Game theory. 但嗰班人數有幾多先
2017-06-22 23:17:08
一定100啦==
就算得你1個寫99 其他全部100 你都寫唔到個最大數字 都係冇分加 所以老閪都寫100
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞