如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
如果輸咗或者打和都要死 你會點揀
我覺得好難 10又唔係 9又唔係咁 好迷惘
如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
77
如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
如果輸咗或者打和都要死 你會點揀
我覺得好難 10又唔係 9又唔係咁 好迷惘
77
撞左了
73
73
撞左
如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
如果輸咗或者打和都要死 你會點揀
我覺得好難 10又唔係 9又唔係咁 好迷惘
如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
如果輸咗或者打和都要死 你會點揀
我覺得好難 10又唔係 9又唔係咁 好迷惘
你諗清楚先啦
如果少人同frd玩 將個range限到1-10得唔得
一對一 終極心理戰
實填10喎
咁如果人地都係咁諗呢?
同埋有賭注會難玩好多
佢都填10咁咪打和囉,冇蝕底喎
如果輸咗或者打和都要死 你會點揀
我覺得好難 10又唔係 9又唔係咁 好迷惘
咁自己就死硬 問題變成你想唔想佢死
99.99999999999999999999999999999999999
無話唔比小數
92
fk
但嗰位巴打case 2 根本已經fail咗,因為如果有兩個人揀100得佢揀99,佢贏架太長唔想用中文打
The strategy of choosing 100 is a weakly dominant strategy.
Consider a player, Alice. We only need to consider two cases:
Case 1: The largest number chosen by the rest of the group is strictly less than 100. Then, Alice can always win by choosing 100, but if she may lose if she chooses a number less than 100.
Case 2: The largest number chosen by the rest of the group is 100. Then, Alice will lose no matter which number she chooses, so she is indifferent between all possible strategies.
The conclusion means that all (rational) players should choose 100, leading to a Nash equilibrium outcome in which all players gain zero point.
實際上唔係
it sounds good but it never works
好明顯考你既唔係實際你填既數字而係背後既concept
呢個咪就係正確答案
study下Nash Equilibrium先啦