[腦力大挑戰] Mathematical analysis BB班

1001 回覆
639 Like 19 Dislike
2018-01-10 14:53:41
infinite series 其實係一個 sequence of partial sum, 我地話 infinite series = L 係指個sequence of partial sum 條尾同L好近

最簡單既講法係 你唔好將佢當成你小學學嗰種加法,根本唔係同一樣野

好彩讀多咁多年天文都冇白廢,係冇理解錯,只係我up唔出。
疑惑係在於,呢種「忽略」某部分野既方法。係其他理論套用時,其實係咪造成好大既失真,eg細尺度既量子/弦論上。
2018-01-10 15:40:15
但係take左limit, 所以又唔可以真係話有忽略到
透過增加個n, 想幾近就有幾近
2018-01-10 15:49:54
我睇過youtube講zeta analytic continuation
係為左令個function係all real numbers 都continuous and differentiable先會有另一邊既definition
其實係無意義既
唔知有無理解錯?
2018-01-10 15:59:10
平時我地做measurement嘅時候
「忽略」咗後面嘅野冇計就會造成誤差
我地計得越多term,個誤差就越細

但係數學上嘅limit
講嘅係有一個數L
你只要加得夠多term
你就可以同L足夠地近
而呢個L唔會因為你考慮要加幾多個term而變(因為你要考慮曬所有嘅term)
咁由於我地無法真係計曬咁多個term
個L存在唔代表我地有一個好簡單嘅辦法「計」到佢出嚟
我之前畀嗰啲examples其實都係特例
咁啱我地有足夠(但可能超難)嘅數學工具去證明L係邊一個數
但係如果冇嘅話,我地都只能夠用返小學雞方法逐個逐個加
去「接近」個limit (我地甚至唔一定知個誤差有幾大)
2018-01-10 16:06:10
其實係

通常係theoretical physics先會見到啲咁嘅野
maths啲人正常嚟講唔會寫1+2+3+...

有啲physical model可能會有一個step係見到我地要加1+2+3+...
但係呢樣野係undefined,但係個數係有physical meaning
咁啲物理學家就claim佢其實係ζ(-1)
於是就用analytic continuation去話佢係-1/12咁囉
2018-01-10 16:08:03
好似冇人睇明我問緊咩,雖然我都問到1999 。不過我地睇下外國人點講:

The "identity" 1 + 2 + 3 + ... = -1/12 is wrong, because the summation of a divergent series does not have a value and cannot be equal to a finite number.
However, the following statement is correct:
"The Riemann-zeta-regularized summation of 1 + 2 + 3 + ... yields -1/12."


Then this function zeta(s) is analytically continued to negative values of s, where the series itself has no meaningful value any more. The result of these steps is zeta(-1) = -1/12. Mark: zeta(-1) is not equal to the original divergent series, but it follows from it through the regularization steps described here.


For a physics calculation, it is only safe to apply such Riemann-zeta regularization if the regulator s is introduced at a point in the calculation where everything is still mathematically well-defined, i.e. before arriving at a divergent series. Otherwise there are caveats such that the calculation might lead to right or wrong results, you never know in general, and manipulating divergent expressions is a dangerous thing to do.

http://physicsbuzz.physicscentral.com/2014/01/does-1234-112.html

照咁睇,失真呢個件事上,我好似諗多左。
2018-01-10 16:08:36
lm
2018-01-10 16:18:46
https://plus.maths.org/content/infinity-or-just-112
呢篇都解得幾好。btw,唔該大家既解答。
2018-01-10 16:38:46
好撚正
2018-01-10 16:52:18
Google about Riemann series theorem.

你個S_1同S_2係兩個 different series, 唔係同一個math object 黎~

On the other hand, 如果你個series係absolute convergent, 你就可以任主意調轉d terms去create另一個series, 而一樣得出同樣的limit.
2018-01-10 22:53:25
pish
2018-01-11 01:29:56
樓主講開elementary analysis, 唔知你有冇聽過有本書叫Counterexamples in Analysis, 好正的
2018-01-11 02:41:18
其實我唔係做analysis...
2018-01-11 02:48:18
nt神
2018-01-11 02:56:18
其實講NT開唔開到台
2018-01-11 02:59:33
elementary已經有排講
2018-01-11 03:49:28
關partial derivatives咩事
2018-01-11 04:03:01
本rudin仲係屋企
2018-01-11 04:04:31
集齊三本未?
2018-01-11 04:22:17
quadratic receprocity之前嘅NT我會概括為數手指
2018-01-11 04:23:32
咁講丟番圖方程
2018-01-11 04:31:16
咁FLT都係
2018-01-11 04:56:58
好有心 留名慢慢睇
希望樓主講下其他 topic
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞