過完聖誕節
我地不如開個新topic
Calculus
自古以來(起碼都幾百年啦),人類對於一條function嘅值點樣隨住input嘅改變而改變都十分有興趣,喺唔同嘅領域都有廣泛嘅應用
但係我地點定義呢樣野呢?
一個好小學
嘅方法就係畫條function出嚟,再度佢個slope
以f(x)=x²為例,我地可以揀兩點畫個slope出嚟
跟住數格仔
我地就會估算到
喺x=1同x=2之間,x每增加1, f(x)就大概增加3
仲記得搵slope嘅formula嗎
但係呢個估算都幾斷鳩估吓
我地點樣先可以令我地嘅估算更加準確呢
當我地考慮嘅區間愈嚟愈細
咁條function就愈嚟愈似直線
我地嘅對於呢一點嘅斜率就估得愈嚟愈準
咁點先最準呢?
就係當個區間嘅長度變成零嗰陣
但係,我地有個問題
就係擺落條slope formula,我地會得到 0/0
咁係計唔到野嘅
所以我地退而求其次
搵個limit塞住佢:
咁如果呢個limit存在,我地就話f(x) is differentiable at a
而呢個limit 我地就叫做derivative of f(x) at a,寫做f'(a)
其呢度講嘅野同你中學呀蛇講嘅野係一樣
我地知多咗嘅野只係個limit係點定義
喺我地計一條function嘅derivative之前,我地首先要確保佢存在
個證明其實一行就搞掂:
呢個正正就係我地上次講過嘅continuity嘅其中一個對等嘅定義
搞掂
但係呢條theorem係
唔可以調轉行
i.e. continuous唔代表differentiable
一個常見嘅counter example有absolute value function
雖然佢係continuous,但係個derivative喺0係undefined
我地平時喺中學見到嘅continuous function,即使唔係everywhere differentiable,但係都至少somewhere differentiable
咁總體嚟講啱唔啱呢?
一個有趣嘅counterexample係Weierstrass function
好似股市走勢圖咁
條formula係咁嘅
咁呢條function係everywhere continuous but nowhere differentiable
唔證喇,自己玩飽佢
大家M1/M2嘅textbook入面都應該有講product rule/quotient rule/chain rule嗰啲
所以時間所限我就慳返唔講喇,
剩返落嚟嘅時間我地專注喺derivative嘅性質上面
一個幾suprising嘅野係雖然differentiable嘅野係continuous,但係d完之後得出嚟嘅function唔一定係continuous
所以一個有趣嘅問題就係derivative可以有幾樣衰
我地首先要一個中學有教嘅result:
Proof: Exercise
Hint: 諗吓左邊同右邊嘅limit
跟住我地有條比較複雜嘅定理
呢條theorem其實即係話條derivative function會穿過曬f'(a)同f'(b)之間嘅點(即使個derivative唔係continuous)
點證呢?
我地假設f'(a)<L<f'(b) (另一個case一樣做法,唔寫了)
咁我地可以整個新嘅function
咁g係continuous (因為f係continuous)
而且g'(a)<0, g'(b)>0
根據上次我地證嘅theorem,g(x)會有個minimum value g(c)
咁g'(c) = 0, 即係話 f'(c) = L
咁我地依家唯一要做嘅野就係確保c唔係a或者b
但由於g'(a)<0, g'(b)>0
我地可以肯定a同b唔係minimum
Exercise!
所以c唔係a唔係b
搞掂