[腦力大挑戰] Mathematical analysis BB班

1001 回覆
639 Like 19 Dislike
2017-12-14 11:07:04
媽 好深呀

analysis好恐怖架, 唔好讀math major呀

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀

stat?

印象中係鳩背為主
利申:淨係講過year one intro courses
2017-12-14 11:22:20
媽 好深呀

analysis好恐怖架, 唔好讀math major呀

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀

stat?

印象中係鳩背為主
利申:淨係講過year one intro courses

stat背書少過 maths n 倍,堆 theorem無咁重要嘅 regularity condition又唔珗點記,大 theorem嘅 proof又唔考
2017-12-14 11:57:59
邊6個負評
2017-12-14 21:32:49
好想做mature student入番去讀數
(啲中學師弟以為我當年走左去讀數,點鳩知係完全唔關事既科
LM學野

想去就去啦,有啲野now or never, 中大msc好似二月截止,十萬蚊興趣班黎姐,人地鐘意煮野食去報藍帶要百鳩幾萬,相對之下唔貴喇 有啲人都係做左幾年唔關事既野走去讀,樓主寫既野好適合讀之前掂下先
2017-12-14 21:41:10
數學無涯 回頭是岸


2017-12-14 22:03:26
Lm
2017-12-14 22:13:47
岩岩讀完topology 留名
2017-12-14 23:27:00
岩岩讀完topology 留名

讀完topology唔使睇呢個喇掛...
2017-12-14 23:54:21
數學無涯 回頭是岸



2017-12-15 01:23:27
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁
2017-12-15 01:29:31
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0
2017-12-15 09:56:40
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0

2017-12-15 10:16:13
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

By definition, -1 is additive inverse of 1, by definition, 1 - 1 = 1 + (-1) = 0


乜野
2017-12-15 10:25:20
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

中學
2017-12-15 18:36:23
pish
2017-12-15 22:07:33
1+1=2係咪冇得prove
因為哩個係axiom ?

2的定義係1+1
2017-12-16 00:01:36
1+1=2係咪冇得prove
因為哩個係axiom ?

2的定義係1+1

first we have zero 0 and succ function
definition of 1: succ(0)
definition of 2: succ(1)=succ(succ(0))
addition is define recursively by:
a + 0 = a
a + succ(b) = succ(a+b)
Then , 1+1=1+succ(0)=succ(1+0)=succ(1)=2
2017-12-16 01:20:17
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

中學

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩
2017-12-16 01:47:16
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

中學

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩

Category 只係一堆 abstract nonsense
2017-12-16 02:40:21
聽個數學代課講點prove1-1=0
聽到1999 好似好勁咁
啲女同學哇哇哇哇哇咁

中學

聽category講話所有野都有一個相對既自己,同自己相加會變「零」,另一個同自己相乘會變「一」
利申 睇完wiki完全唔知佢講咩

Category 只係一堆 abstract nonsense

呢個問題用唔著Cat theory掛...
2017-12-16 03:20:15
我有fd 都讀緊
2017-12-16 11:16:00
跟住落嚟要講嘅,可能係最多讀analysis嘅同學中過嘅伏...

大家讀緊幼稚園嘅時候,老師都會話你知,加法嘅順序係唔影響結果嘅
即係1+2+3+4係10, 咁3+1+4+2都係10

咁當我地有一條sequence {an}, 如果我地用唔同順序去加曬啲數:

咁根據幼稚園小朋友嘅知識,佢地加埋一定一樣啦

咁我地不如就屎忽痕驗證吓:

呢度S1就係上個post最尾嗰個example
而S2同S1嘅分別就係我地每加兩個term先減一個term

咁我地計吓佢地頭n個term嘅partial sum:

咁我地見到S1似乎趨向~0.6931
而S2就趨向~1.0397
補充資料: S1 = ln 2, S2 = 3(ln 2)/2

問題嚟喇,點解佢地唔同嘅
唔通幼稚園嘅真理係唔適用於series?
如果幼稚園方法都行得通,
咁讀幼稚園得啦,唔使讀大學啦


為咗要解決呢個數學危機,我地需要一啲新工具:

absolutely convergent嘅意思即係就算我地加曬啲absolute value都唔會爆炸
會爆炸嗰啲就係conditionally convergent

例子:
2-series係absolutely convergent(因為所有term都係正數,攞唔攞absolute value都冇分別)
而上面嘅S1就係conditionally convergent(攞absolute value就變咗會爆炸嘅Harmonic series)

咁呢兩種series有咩分別呢
答案就係喺幼稚園教落嘅定律行唔行得通

如果個series係absolutely convergent, 咁我地用咩順序加啲terms都殊途同歸:


假設{an} converge去A,同埋係absolutely convergent
咁對於是但一個ϵ,我地都搵到一個N,使到當n, q≥N時,

(sn繼續代表partial sum)

依家考慮另一個排列{bn},同佢嘅partial sum {tn}
咁我地一定會搵到一個M,令{an}嘅頭N個term都裝喺{bn}嘅頭M個term入面 (因為N係有限數,我地逐個逐個term執返就得)

咁當m≥M時,tm比起sN就多咗一堆喺aN之後嘅term,而根據我地嘅假設,呢堆多咗出嚟嘅term加埋係細過ϵ


跟住就可以揮動我地嘅寶劍(aka triangle inequality)

所以{tn}都係converge去A

搞掂

如果你說服唔到自己點解<ϵ同<2ϵ係一樣,可以諗吓change of variable,將2ϵ變成ϵ

如果個series係conditionally convergent嘅話,調亂啲順序又會點呢

畀啲空間你地估吓

...

...

...

...

...

我地可以透過調亂啲順序,令佢converge去任何一個實數,仲可以令佢diverge去+/- ∞


要證明呢樣野,只要搵到相應嘅rearrangement就得囉
係咪好簡單先

我地首先要留意一樣野,就係conditionally convergent series入面嘅正數加埋會diverge, 同樣地負數加埋都會diverge
諗吓點解?

於是我地就可以將條sequence分做兩個subsequences
{cn}裝住≥0嘅term
{dn}裝住<0嘅term
咁大家要記得呢兩個series都係divergent嘅,但係{cn}同{dn}都趨向0 (唔係嘅話{an}唔會converge)

所以對於任何實數r
如果之前嘅term加埋係細過r, 咁我地就擺多一個喺ck落去
如果之前嘅term加埋係大過r, 咁我地就擺多一個喺dk落去
咁得出嚟嘅partial sum就會喺r附近徘徊
而因為{cn}同{dn}都趨向0, 所以呢個series係會converge去r嘅
Exercise: Prove this

至於diverge去+/- ∞就仲簡單
因為{cn},{dn}都係divergent嘅,所以對於任何 m, n, 我地都搵到一個p,使到


咁只要我地塞足夠多嘅ck喺兩個dk中間

我地就可以令佢diverge to +∞
同樣地,我地可以塞足夠多嘅dk喺兩個ck中間,令佢diverge to -∞

搞掂

下回預告: 會見到ε, δ呢兩個字母
2017-12-16 11:21:19
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞