講起mathematical analysis,唔少讀數嘅學生都聞風喪膽,究竟佢有啲咩咁恐怖
咁呢個post我會講吓呢個範疇嘅基本概念(即係所有mathematical analysis course都會有嘅野),畀大家了解吓究竟呢班癡線佬做緊乜
雖然呢度係講中文,但係為咗方便大家google(同埋我自己打),啲數學名詞都係會用返英文(如果我知隻字中文係咩我會打一次出嚟 )。英文唔好唔緊要,反正數學入面啲字嘅定義同出面嘅世界唔同(唔通我個標題打「數學分析」你就會知我講乜咩
我估我大概會講吓下面呢啲比較有趣嘅問題:
點解1+ 1/2 + 1/3 + 1/4 + ...會加到無限大,但
1+ 1/2² + 1/3² + 1/4² + ...就唔會
(睇吓反應如何)可能會講吓微積分嘅概念呢啲
不過我地首先要打好基本功
不如就由real number(實數)開始講起啦咁
Real number 係咁嘅樣嘅
喺呢條線上面就有好多好多數字嘅(比無限仲要多,遲啲再講),有整數1, 2, 3, -123456789, ..., 有分數 1/2, 2/3, ..., (我地叫呢啲做有理數(rational number)), 仲有啲無得寫成兩個整數相除嘅無理數(irrational number),就好似π, e, log 2 等等。
咁我地發現實數係滿足一定條件嘅(無得證, 換言之呢啲條件係實數嘅定義):
1. 滿足我地平時加減乘除嘅規則(例如唔畀除零) - Field axiom
2. 兩個正數相加係正數, 兩個正數相乘係正數, 同埋(trichotomy law)求其畀兩個數a,b你, 咁下面三句說話一定有一句係啱:
a>b, a=b, a<b (聽落係咪好廢呢)
呢度夾埋就叫做 Order axiom
3. 喺一堆有上限嘅數(我地叫呢一堆數做一個數集(set),通常用S去代表)入面,存在最小上限(supremum) - Completeness Axiom
你可能會問,究竟最尾嗰條axiom係噏乜鳩
要好清楚咁講,就梗係要畀個定義嚟跟吓先啦
咁我地首先要定義咩為之上限:(upper bound)大過曬啲數咪係囉
如果一個數a係大過個set入面所有嘅數, 咁a就係一個upper bound
用鬼畫符就係咁寫嘅:
因為數學家(以及普遍嘅數學學生)係好懶嘅,佢地成日都會將啲字用符號代表
其實佢地想講嘅野係
"a is an upper bound of a set S if a>s (for all) s (in) S."
我估咁樣會易明啲掛...?
我地定義完上限之後,就可以定義S嘅最小上限(叫做sup S)喇
其實個定義好on9, 就係:
1. a係S嘅一個上限
2. 如果b係S嘅另一個上限,咁b≥a
真係好廢
講咗咁多廢話,有冇啲例子睇吓呢?
sup{1,2,3}=3 (我諗呢個唔使解掛...)
{1,2,3,4,5,...} 冇supremum(因為佢冇上限)
複雜少少嘅有
sup{0.9, 0.99, 0.999, 0.9999,...}=1
我地見到1係大過曬入面嘅數,所以1係一個upper bound
但係任何一個細過1嘅數x,我地都可以喺個set入面搵到個數係大過x (點解嘅?點解嘅?)
所以1真係最細嘅upper bound
講咗咁耐,究竟completeness axiom係有咩用嘅?
我地就諗吓下面呢個例子:
又係講解鬼畫符嘅時間
我地會用一個大括號去表示入面裝住嘅野係一個set,而入面嘅結構係咁嘅
{ 一堆候選物件(可以係數字,可以係其他野,甚至可以係另一個set) |需要滿足嘅條件}
而我地喺入面見到一個好粗嘅Q係代表住有理數集(set of rational numbers)(即係所有分數)
所以呢行鬼畫符要講嘅野係:
"S is a set of rational numbers x satisfying x²<2"
就我地喺中學學過嘅野,我地知道
呢個就係completeness axiom存在嘅意義,因為喺有理數入面,我地唔會搵到一個最小上限,而呢個axiom就指出我地係實數入面一定搵得到
所以呢個係實數與生俱來嘅特性
講咗咁耐定義,到底有咩用啫
我地下次就會講吓數列(sequences)
一個數列,其實就係一堆排好隊嘅數(要注意嘅係條隊要無限長)
例如有好出名嘅Fibonacci sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
可以係無限個零:
0, 0, 0, 0, 0, 0, ...
甚至做健身操會嗌嘅數字:
1, 2, 3, 4, 2, 2, 3, 4, 3, 2, 3, 4, 4, 2, 3, 4, 1, 2, 3, 4, 2, 2, 3, 4, ...
我地下次就會睇吓呢啲數列嘅特性,今次打住咁多先