[腦力大挑戰] Mathematical analysis BB班

1001 回覆
639 Like 19 Dislike
2017-12-09 18:21:05
點解dom(x^0) 會包埋0 ?

你邊度睇返嚟㗎

WolframAlpha, Symbolab

http://www.wolframalpha.com/input/?i=dom%28x%5E0%29

我覺得係WolframAlpha 錯

同感
2017-12-10 14:39:22
pish
2017-12-10 20:21:15
留名學嘢
2017-12-14 03:03:06
食埋飯出文

其實仲有冇人睇緊
畀個正皮點人頭得唔得
2017-12-14 03:09:04
好想做mature student入番去讀數
(啲中學師弟以為我當年走左去讀數,點鳩知係完全唔關事既科
LM學野
2017-12-14 03:11:23
2017-12-14 06:13:03
好想做mature student入番去讀數
(啲中學師弟以為我當年走左去讀數,點鳩知係完全唔關事既科
LM學野

做咩咁睇唔開
2017-12-14 07:18:44
有冇textbook 適合自學analysis? 最好由real 到functional 都有
有足夠algebra 底但係冇讀過任何analysis course
2017-12-14 08:05:54
講完sequence,我地終於有工具去討論一啲比較有趣嘅問題嚕

今次我地就講吓加無限多個數嘅問題
例如點解我地會話 1+1/2+1/4+1/8+... = 2

因為我地成日都會討論呢啲問題,所以我地又會畀個名佢真係好鬼多名要記

對於一條sequence {an} , 我地可以整一條新嘅sequence {sn}, sn嘅值就係頭n個term加埋嘅和,即係咁

咁呢條sequence就叫做sequence of partial sums

如果覺得太抽象,可以諗吓下面嘅例子:
對於 1/2, 1/4, 1/8, ... 呢條sequence,
佢對應嘅{sn}就會係 1/2, 3/4, 7/8, ...

咁呢條新嘅sequence,我地叫佢做一個級數(series),通常就會用呢個符號代表

其實呢舊野係abuse of notation(濫用符號?),不過是但啦

如果呢條{sn} converge去L,咁我地就會話呢個series converge去L, 而呢個L就叫做sum of the series (級數和? ),咁我地就通常咁寫:

今次冇咁abuse of notation喇

反之,如果{sn} diverge (to +/- infinity),咁我地就話呢個series diverge (to +/- infinity)

有例子未

我地首先要討論嘅就係geometric series (DSE嘅同學仔應該見過咩係geometric progression,呢個就係佢嘅無限版)
佢係咁樣樣嘅:

為咗方便,啲人通常由n=0開始數,但其實冇咩所謂

咁當r≠1嗰陣,我地嘅sn就會係咁嘅樣:


如果-1<r<1嘅話,咁rᵏ⁺¹就會越嚟越細,慢慢趨向0
所以個series就會converge去1/(1-r)

我地望返post頂嗰條series 1+1/2+1/4+1/8+...
咁佢其實係一條geometric series (c=1, r=1/2)
所以個series個sum就係1/(1-1/2) = 2

如果|r|≥1, 咁點算呀
咁大家見到後面嘅term唔會變細,咁佢地加埋就梗係唔會converge啦

所以佢地就係divergent喇

我地由上面嘅例子見到,要一個series converge,咁{an}就一定要趨向0
睇落好啱,但係點prove呢?


如果一個series converge, 咁{sn}就係一條convegent sequence (by definition),所以佢係一條Cauchy sequence
咁對於求其一個ϵ,我地都搵到一個N,使到第N個term之後任意兩個term嘅差都細過ϵ
咁當n>N嗰陣,代入返呢個結果,我地就得到
|sn-sn-1| = an
所以{an} converge去0
搞掂

咁調返轉得唔得呢?
如果一條sequence係converge去0, 咁條series係咪一定converge呢?

唔係

Counterexample在此:

呢個可能係最出名嘅divergent series,叫做Harmonic series

點解佢diverge? 我地睇吓佢嘅partial sum:

如此類推,我地得到:

由此可見sn係冇上限嘅,所以佢diverge

知道佢diverge有咩用?

識少少physics嘅朋友仔可以計到如果我地有n舊長度為1嘅磚擺喺枱面,咁最頂嗰舊磚就可以伸到離張枱

咁遠

咁因為Harmonic series係divergent,所以我地只要有好多好多(真係好多)舊磚,最頂舊磚伸到幾遠都得
如果你想伸到100咁遠,你需要超過10^43舊磚
2017-12-14 08:06:59
有冇textbook 適合自學analysis? 最好由real 到functional 都有
有足夠algebra 底但係冇讀過任何analysis course

https://g.co/kgs/nvvrJL
2017-12-14 08:32:16
divergence test就咁
lim x_{n +1} = lim (s_{n + 1} - s_n) = = L - L = 0
咪得
2017-12-14 09:40:09
跟住我地就講吓一啲分辨series係咪converge嘅方法 (convergence tests)

首先我地有Comparison test:

個idea其實好簡單
如果大嗰個series冇爆煲,咁細嗰個series都唔會爆煲
如果細嗰個series都爆煲,咁大嗰個series都會爆煲
Proof: Exercise
提示: 可以對partial sum {sn}使用Cauchy sequence
做乜好似搞到打Pokémon咁

佢嘅好處係唔使計
壞處係你首先要知道邊啲series係converge先有得比較

一個常見嘅example就係p-series:


我地依家就試吓證明當p=2嘅時候,呢個series係convergent

首先我地要搵條可以比較嘅series:

點解咁樣衰嘅
咁我地發現,當我地將頭n個term加埋嘅時候,奇蹟發生了:

咁呢個series嘅partial sum就會converge去1

然後我地將個2-series重寫吓


我地就得到


咁comparison test就話畀我地知 2-series係convergent嘅
搞掂
其實comparison test仲話畀我地知

(諗吓點解?)


Exercise: 用comparison test去證明當p>2嘅時候,p-series係convergent


比較可惜嘅係呢個方法(同埋其他convergence tests)只可以話畀你知佢係咪converge,但係無辦法知道佢地converge去邊
例如我地知道

但係如果你搵得到3-series嘅sum嘅exact value,下屆Fields medal應該會係你攞


言歸正傳,我地講吓其他convergence test:


Proof: 如果r>1, 咁啲term就唔會converge去0, 所以個series就會diverge
如果r<1, 大家可以試吓同geometric series比較吓
即係exercise囉

例子: 讀過Taylor series嘅同學仔都應該知道呢個series

係convergent

而ratio test就話畀我地知


要注意嘅係如果r=1嘅話,呢個test係廢嘅(i.e. 無法提供任何資訊)
例如對於Harmonic series同2-series,佢地個r都係1, 但係一個diverge一個converge

除咗Ratio test, 我地仲有個差唔多嘅test


Proof: 同ratio test個proof一樣

最後我地有一個好奇怪嘅test:


Proof:
我地考慮佢嘅partial sum {sn}
因為an係+ve同decreasing,我地可以推斷sn+1喺sn同sn-1之間(停一停,諗一諗)
於是我地知道(by induction) 當m>n嗰陣 sm喺sn同sn-1之間
而因為{an}趨向零,對於任何ϵ,我地都搵到個N令到|sN+1-sN|<ϵ
所以當m,n>N嗰陣,我地得到|sm-sn|<ϵ
所以{sn}係Cauchy sequence,所以converge
搞掂

例子:
呢個series係convergent:

各位記性好嘅話應該認得出呢個係我話明顯Cauchy嘅series (雖然望返好似又真係唔係好明顯)
希望大家對呢度上面嘅解釋滿意啦

下集: conditional convergence
2017-12-14 09:41:40
2017-12-14 09:42:36
divergence test就咁
lim x_{n +1} = lim (s_{n + 1} - s_n) = = L - L = 0
咪得

呢個方法如果個思維跳唔到
好似好難解釋到人地明
其實係我係跟我睇嘅notes,唔關我事㗎
2017-12-14 09:45:52

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)
2017-12-14 09:47:55

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)

2017-12-14 09:49:58

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)


(under some conditions)
2017-12-14 09:50:43

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)


2017-12-14 09:58:30

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)



2017-12-14 10:00:37

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)




2017-12-14 10:04:43

唔係有講我地用得越多term就會越準咩
咁有無限個term咪無限準(i.e. converge to true value)





2017-12-14 10:40:03
媽 好深呀
2017-12-14 10:55:57
媽 好深呀

analysis好恐怖架, 唔好讀math major呀
2017-12-14 11:01:22
媽 好深呀

analysis好恐怖架, 唔好讀math major呀

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀
2017-12-14 11:04:29
媽 好深呀

analysis好恐怖架, 唔好讀math major呀

但係唔想鳩背project present essay lab嘅話仲有咩科可以揀

stat?
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞