[腦力大挑戰] Mathematical analysis BB班

1001 回覆
639 Like 19 Dislike
2017-12-05 00:56:33

Physics嗰啲無睇唔評論

-1/12嗰條講啲唔講啲我覺得好反感
佢好似係講緊啲唔知乜鬼特別summability/summation (我無學)
但又無清楚講明
結果一個正常學過convergence嘅觀眾會覺得佢哋喺度唔知做乜鳩


無學過真心唔知
佢將啲divergent series搞嚟搞去呢種做法我接受唔到

通常話assume converge再搞一大輪係比局外人睇
summability 呢個概念好似係d 咩special functions, harmonic analysis 有用
例如 sum (-1)^n "=" 0 實質上係想講 lim sum_N [(-1)^n]/n = 0
好似仲有一門野係專搞呢D divergent series 比D summability 的意義比佢地, 不過我唔太清楚詳細係點

等睇呢個post啲數撚出手

sum (-1)^n 唔係-1/2咩 by consdering Cesàro summation

雞同鴨講
Cesaro sum 係average of partial sum
我講緊係average of terms
兩種唔同的意義 ~
所以要講清楚個interpretation係乜

乜鳩嚟
我淨係聽過analytic continuation

讀fourier 應該開頭會聽過 cesaro mean, 即係堆partial sum ge mean
Sigma_n = sum s_i / n
Cesaro summable 即係 lim Sigma_n exists and finite
咁樣有好多divergent series 都被賦予意義
2017-12-05 14:14:48
依家發現其實物理學入面係冇咩真正意義上既infinite series
物理學既fourier 絕大部分都係continuous
Taylor series 通常淨係攞頭一兩個term
QFT 既perturbations 多數都係asymptotic ,開頭好似converge,實際就diverge
2017-12-06 11:03:51
咁多位我返嚟喇

喺繼續講theorem之前,我地要介紹吓一種好乖嘅sequence先
佢個名就叫單調數列(monotone sequence)
咁monotone sequence就分兩種嘅
- increasing: 數列入面每一個term都不小於前一個term
- decreasing: 數列入面每一個term都不大於前一個term
如果數列每一個term都大過前一個term,我地叫佢做strictly increasing;
咁大家應該知咩係strictly decreasing


點解話佢地好乖呢?因為佢地只可以向一個方向行,冇得彈入又彈出,所以佢地好容易就converge到喇

有幾容易? Monotone convergence theorem答到你:


大家可以想像吓,啲點只可以向一個方向行,但又唔畀過界,咁會converge都係好自然嘅事


雖然睇落好似好有道理,但係我地都係要證一次先安樂

我地依家假設{an}係increasing, bounded above
咁completeness axiom話畀我地聽sup{an}存在
叫住佢做L先
咁因為L係最細嘅upper bound,所以無論ϵ>0幾細,L-ϵ都唔係一個upper bound, 即係有一個ak>L-ϵ
但係我地知道{an}係increasing,所以ak之後嘅term都夾喺L-ϵ同L之間
所以{an}就converge去L喇
第二part可以用同一個方法證,所以too long didn't write
2017-12-06 11:04:03
講完monotone sequence,我地就講吓subsequence啦
讀過analysis嘅巴打一定知我想講咩theorem

當我地有一條數列{an},咁我地就可以從中抽一啲term出嚟,喺唔重複唔打亂次序嘅情況下造出另一條數列
咁呢條新數列就叫做{an}嘅子數列(subsequence)

例如當{an}=n嘅時候
1,3,5,7,9,... 係{an}嘅subsequence
1,4,9,16,... 都係
但 1,1,2,3,5,8,13,...唔係{an}嘅subsequence(因為1重複咗)
1,5,3,7,9,..都唔係(因為次序唔啱)

我地通常用{ank}去表示一條subsequence,而nk就係話畀我地知要攞原本條sequence係幾個term
{ank}個k應該要再細隻過n,但因連登formatting所限做唔到,不過我諗唔會令大家混淆嘅

咁我地就有兩個關於subsequence嘅簡單result:
1. 如果{an} converge去L,咁佢所有subsequence都會converge去L
2. 如果{an}有兩條唔同嘅subsequence converge去兩個唔同嘅數,咁{an}就會係divergent
Proof: Exercise

例子:
{an} = (-1)ⁿ⁺¹ (即係1,-1,1,-1,1,-1,1,-1,1,...)係divergent, 因為我地搵到兩條converge去唔同數嘅subsequence:
{a2n}=1係converge 去1,
但係{a2n+1}=-1係converge 去-1

跟住我地就有一條難少少嘅Lemma
(Lemma通常係指前往我地想證嘅野嘅踏腳石,但唔一定冇乜用)
就係每條sequence都有一條monotone subsequence

要證明呢個lemma,我地首先要屈啲野出嚟先(所以有少少難)
喺一條sequence {an}入面,如果ak不小於之後嘅term,我地就叫ak做dominant


咁一條sequence就只有兩個可能性
一係有無限咁多個dominant term,一係得有限多個dominant term
射十二碼一係入一係唔入
如果我地有無限咁多個dominant term, 咁呢啲dominant term就砌成一條decreasing subsequence
相反,如果我地得有限多個dominant term,咁我地就會有一個最後嘅dominant term as
咁an1=as+1就唔係dominant, 即係有一個term an2係大過an1
而an2都唔係dominant,即係有一個term an3係大過an2
如此類推,{ank}就會係一條increasing subsequence
搞掂

用呢條Lemma,我地就可以證到一條有名嘅定理(雖然我個人覺得佢冇乜用)

站在巨人的肩膊上,呢條theorem就變得好易證

我地假設{an}係一條bounded sequence
咁上面個Lemma就話我地有一條monotone subsequence (呢樣唔關bounded事)
而monotone convergence theorem就我地知呢條subsequence係converge嘅
搞掂
用呢句代替QED好似唔錯

下集我地開始講Cauchy呢條仆街仔
2017-12-06 11:19:56
皮已再正
2017-12-06 12:00:40
"Proof: Exercise "

2017-12-06 12:04:17
subsequential limit係一樣好有用嘅嘢...

證一個space係complete有時都要靠佢

btw BW-theorem 係重要, 因爲佢明確確立左Cauchy sequence => converges (i.e. R is complete)
而之前所謂的sup/inf property仲未有咁明顯的確立

而證一個space係complete好多時都係抽subsequetial limit
2017-12-06 12:25:38
留明慢慢睇
2017-12-06 12:31:52
"Proof: Exercise "


識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個
2017-12-06 12:32:45
留名
2017-12-06 12:37:11
"Proof: Exercise "


識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個



2017-12-06 12:44:17
lm
2017-12-06 13:04:00
"Proof: Exercise "


識嘅人覺得好正常好低B
唔識嘅人就想屌鳩出書嗰個




Jed
2017-12-06 13:56:34
睇到呢個位已經覺得maths唔係人類的語言,係外星文
2017-12-06 14:05:35
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
你會發現其實唔難
2017-12-06 14:11:25
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
你會發現其實唔難

對比上面幅圖簡直小菜一碟
同埋first course in analysis只係嚴謹少少的微積分姐
2017-12-06 19:32:32
睇到呢個位已經覺得maths唔係人類的語言,係外星文

用心去感受一下數學(尤其係analysis)嘅偉大
你會發現其實唔難

對比上面幅圖簡直小菜一碟
同埋first course in analysis只係嚴謹少少的微積分姐

Elementary real analysis其實已經算淺白sosad
2017-12-06 20:10:41
subsequential limit係一樣好有用嘅嘢...

證一個space係complete有時都要靠佢

btw BW-theorem 係重要, 因爲佢明確確立左Cauchy sequence => converges (i.e. R is complete)
而之前所謂的sup/inf property仲未有咁明顯的確立

而證一個space係complete好多時都係抽subsequetial limit


不過證完呢個之後
你再見到佢都只會係Euclidean space嘅加強版
2017-12-07 07:25:33
如果你喺大學讀數,你會成日見到呢條契弟:


無錯,呢條友正是Augustin Louis Cauchy
其實唔使入大學,各位A-level嘅同學仔都可能見過佢
Cauchy-Schwarz Inequality

咁佢同我地要講嘅野有咩關係呢?
事緣有一日,佢覺得要證一條sequence係converge要首先搵到佢嘅limit係一件好麻煩嘅事,所以佢就想搵吓有冇啲唔使知道條sequence嘅limit嘅方法

於是佢就諗到下面呢個定義:

翻譯蒟蒻: A sequence {an} is a Cauchy sequence, if for all ϵ>0, there exists a natural number N, such that |am -an|<ϵ for all m,n≥N.

呢個定義即係話第N個之後嘅term都同其他(第N個之後嘅)term好近

咁有冇例子呢?
其實,是但一條convergent sequence都係例子,因為我地有下面嘅Theorem:

Theorem: A convergent sequence is a Cauchy sequence.

點解?
如果{an}係一條convergent sequence, 咁佢就會converge去一個數,譬如話L
咁對於是但一個ϵ,我地就會搵到一個N,令到第N個之後嘅term都喺L-ϵ/2同L+ϵ/2之間 (呢度其實我地擺咗ϵ/2落個定義度)
咁我地喺第N個之後嘅term求其揀兩個am,an出嚟
咁因為佢地都喺L-ϵ/2同L+ϵ/2之間
所以佢地嘅差|am -an|就細過(L+ϵ/2)-(L-ϵ/2) = ϵ喇
搞掂

咁呢個定義有咩用呢?
我地想搵一個唔需要事先知道limit嘅方法去證一條sequence係convergent,所以如果將條theorem調轉(我地叫converse)都啱嘅話就好喇

好好彩,喺實數R上面,呢條theorem的確可以調轉:

Theorem: A Cauchy sequence {an} is convergent.

喺證明佢之前,我地需要一條Lemma:

Lemma: A Cauchy sequence is bounded.
Proof: Exercise
提示: 諗吓我地點證明convergent sequence係bounded

跟住Bolzano-Weierstrass theorem(可能係最後一次喺度見到佢)就話{an}有一條subsequence converge去某個L
咁對於是但一個ϵ,我地就會搵到一個K,令到{ank}第K個之後嘅term都係L-ϵ/2同L+ϵ/2之間
而因為{an}係Cauchy sequence,所以我地就會搵到一個N,令到第N個之後嘅term之後任意term嘅差都細過ϵ/2

我地依家老屈個數 s = max{K, N} 出嚟
咁我地就有ns≥N

所以當n≥N嗰陣,我地就有呢條不等式:
|an-L| = |an-ans+ans-L|≤|an-ans|+|ans-L|<ϵ/2+ϵ/2=ϵ

所以an係convergent嘅
搞掂

所以我地就有以下嘅結論:


佢有用嘅地方就係我地唔再需要知道sequence嘅limit去證佢convergent

考慮呢條sequence: a1=1, an+1 = an + (-1)ⁿ/(n+1)
咁佢好明顯係Cauchy sequence (因為第n個之後嘅term都係an-1同an之間)
所以佢係convergent,即使其實我地無辦法一眼睇得出佢個limit
(其實佢converge去 ln 2)

但係點解我地要強調我地喺R入面呢?
因為喺其他地方,呢個結論未必啱:
1, 1.4, 1.41, 1.414, 1.4142, ... 呢條sequence喺Q入面都係Cauchy,但喺Q入面佢係唔converge(因為佢converge去sqrt(2), which is 唔喺Q入面)

下回預告: Harmonic series
2017-12-07 07:37:30
不如你寫下點解明顯係Cauchy
2017-12-07 07:45:12
不如你寫下點解明顯係Cauchy

咪寫咗?
2017-12-07 09:45:43
實有人睇唔明
2017-12-07 09:50:36
實有人睇唔明

你覺得邊忽會有人唔明
除咗個example
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞