如果你喺大學讀數,你會成日見到呢條契弟:
無錯,呢條友正是Augustin Louis Cauchy
其實唔使入大學,各位A-level嘅同學仔都可能見過佢
Cauchy-Schwarz Inequality
咁佢同我地要講嘅野有咩關係呢?
事緣有一日,佢覺得要證一條sequence係converge要首先搵到佢嘅limit係一件好麻煩嘅事,所以佢就想搵吓有冇啲唔使知道條sequence嘅limit嘅方法
於是佢就諗到下面呢個定義:
翻譯蒟蒻: A sequence {an} is a Cauchy sequence, if for all ϵ>0, there exists a natural number N, such that |am -an|<ϵ for all m,n≥N.
呢個定義即係話第N個之後嘅term都同其他(第N個之後嘅)term好近
咁有冇例子呢?
其實,是但一條convergent sequence都係例子,因為我地有下面嘅Theorem:
Theorem: A convergent sequence is a Cauchy sequence.
點解?
如果{a
n}係一條convergent sequence, 咁佢就會converge去一個數,譬如話L
咁對於是但一個ϵ,我地就會搵到一個N,令到第N個之後嘅term都喺L-ϵ/2同L+ϵ/2之間
(呢度其實我地擺咗ϵ/2落個定義度)
咁我地喺第N個之後嘅term求其揀兩個a
m,a
n出嚟
咁因為佢地都喺L-ϵ/2同L+ϵ/2之間
所以佢地嘅差|a
m -a
n|就細過(L+ϵ/2)-(L-ϵ/2) = ϵ喇
搞掂
咁呢個定義有咩用呢?
我地想搵一個唔需要事先知道limit嘅方法去證一條sequence係convergent,所以如果將條theorem調轉(我地叫converse)都啱嘅話就好喇
好好彩,喺實數
R上面,呢條theorem的確可以調轉:
Theorem: A Cauchy sequence {a
n} is convergent.
喺證明佢之前,我地需要一條Lemma:
Lemma: A Cauchy sequence is bounded.
Proof: Exercise
提示: 諗吓我地點證明convergent sequence係bounded
跟住Bolzano-Weierstrass theorem(可能係最後一次喺度見到佢)就話{a
n}有一條subsequence converge去某個L
咁對於是但一個ϵ,我地就會搵到一個K,令到{a
nk}第K個之後嘅term都係L-ϵ/2同L+ϵ/2之間
而因為{a
n}係Cauchy sequence,所以我地就會搵到一個N,令到第N個之後嘅term之後任意term嘅差都細過ϵ/2
我地依家老屈個數 s = max{K, N} 出嚟
咁我地就有n
s≥N
所以當n≥N嗰陣,我地就有呢條不等式:
|a
n-L| = |a
n-a
ns+a
ns-L|≤|a
n-a
ns|+|a
ns-L|<ϵ/2+ϵ/2=ϵ
所以a
n係convergent嘅
搞掂
所以我地就有以下嘅結論:
佢有用嘅地方就係我地唔再需要知道sequence嘅limit去證佢convergent
考慮呢條sequence: a
1=1, a
n+1 = a
n + (-1)ⁿ/(n+1)
咁佢好明顯係Cauchy sequence (因為第n個之後嘅term都係a
n-1同a
n之間)
所以佢係convergent,即使其實我地無辦法一眼睇得出佢個limit
(其實佢converge去 ln 2)
但係點解我地要強調我地喺
R入面呢?
因為喺其他地方,呢個結論未必啱:
1, 1.4, 1.41, 1.414, 1.4142, ... 呢條sequence喺
Q入面都係Cauchy,但喺
Q入面佢係唔converge(因為佢converge去sqrt(2), which is 唔喺
Q入面)
下回預告: Harmonic series