我正式宣佈 0.999999........=1 不服來辯

293 回覆
8 Like 87 Dislike
2017-03-07 23:03:37


我反對

0.9999999...x10 咁少左一個小數位囉 點減到齊頭

你咁即係話0.999 x10 =9.999 邊忽合理

...係無限個小數位


無限同無限減一個冇分別?

首先你要搞清楚咩叫無限


所以我講黎係想提你 你o既講法係有assumption

有討論空間 唔好以為一定係真理

無限唔係一個數值 你改變唔到無限㗎喎



你肯定你對無限的定義絕對正確?

淨係嘈無限的定義已經可以嘈幾個世紀

我甚至可以質疑人作為有限的生物係唔會理解到咩叫無限

巴打涉獵少少哲學會明我講咩

你睇完幾次數學危機,明白左呢堆真理先講啦

讀數D人真係好固執
2017-03-07 23:04:05
156789=4564032456
不服來辯
2017-03-07 23:07:32
No doubt 嘅野d人都可以討論咁耐

睇倒呢句笑左
2017-03-07 23:07:44
0.999999999999=/=1
但係0.999999999999.........=1
話1-0.99999...=0.000....1個啲不如去讀多次小學

佢所謂既0.000....1其實係0.1,0.01,0.001...既limit
2017-03-07 23:07:45
lim 1 - x = 1
x→0

上面個 = 1 係指無限接近 1 而唔係等於 1 OK?

利申:未學過微分。


錯concept
當x好接近0而唔等於0時,1-x係好接近1而且唔等於1,但係個limit係等於1而唔係無限接近1

學到嘢,當初自學過下Limit但係學完都唔知做緊咩…
2017-03-07 23:09:05
Z_p呢

應該係...?
已經還返晒比Professor
2017-03-07 23:11:51
[quote]0.999999999999=/=1
但係0.999999999999.........=1
話1-0.99999...=0.000....1個啲不如去讀多次小學

佢所謂既0.000....1其實係0.1,0.01,0.001...既limit[/quote]
啲人係以為無限個0之後有個1係度
同埋呢個係咩limit黎
2017-03-07 23:13:39
[quote]0.999999999999=/=1
但係0.999999999999.........=1
話1-0.99999...=0.000....1個啲不如去讀多次小學

佢所謂既0.000....1其實係0.1,0.01,0.001...既limit[/quote]
啲人係以為無限個0之後有個1係度
同埋呢個係咩limit黎

咪係個sequence既limit
0.1,0.01,0.001...
其實即係0
2017-03-07 23:17:04
Z_p呢

應該係...?
已經還返晒比Professor


無記錯p-adic入面就唔岩,但係euclidean norm就會岩呢樣野
心諗你地係到講一大論做乜野
2017-03-07 23:17:10
2017-03-07 23:20:42
廢事有盲撚唔識google

If the common ratio r lies between −1 and 1 , we can have the sum of an infinite geometric series.

The sum&nbsp;S&nbsp;of an infinite geometric series with −1<r<1 is given by the formula,

S=a/(1−r), where a=first term, r=common ratio

when a=9/10, r=1/10
0.999999……
=9/10+9/100+9/1000+……+9/10^n (where n=infinity)
=(9/10)/(1-1/10)
=1

https://www.varsitytutors.com/hotmath/hotmath_help/topics/infinite-geometric-series

唔撚識英文呀

咁就去食屎啦
2017-03-07 23:23:31
Z_p呢

應該係...?
已經還返晒比Professor


無記錯p-adic入面就唔岩,但係euclidean norm就會岩呢樣野
心諗你地係到講一大論做乜野


連本NOTES都唔知擺左去邊
2017-03-07 23:25:50
廢事有盲撚唔識google

If the common ratio&nbsp;r&nbsp;lies between&nbsp;−1 and&nbsp;1&nbsp;, we can have the sum of an infinite geometric series.

The sum&nbsp;S&nbsp;of an infinite geometric series with −1<r<1 is given by the formula,

S=a/(1−r), where a=first term, r=common ratio

when a=9/10, r=1/10
0.999999……
=9/10+9/100+9/1000+……+9/10^n (where n=infinity)
=(9/10)/(1-1/10)
=1

https://www.varsitytutors.com/hotmath/hotmath_help/topics/infinite-geometric-series

唔撚識英文呀

咁就去食屎啦



仲爭執緊

其實唔係讀數嘅人真係唔洗咁執著,想要了解哂成件事就不如自己好好wiki下,睇唔明先上黎,仲會學得更多
2017-03-07 23:26:33
廢事有盲撚唔識google

If the common ratio&nbsp;r&nbsp;lies between&nbsp;−1 and&nbsp;1&nbsp;, we can have the sum of an infinite geometric series.

The sum&nbsp;S&nbsp;of an infinite geometric series with −1<r<1 is given by the formula,

S=a/(1−r), where a=first term, r=common ratio

when a=9/10, r=1/10
0.999999……
=9/10+9/100+9/1000+……+9/10^n (where n=infinity)
=(9/10)/(1-1/10)
=1

https://www.varsitytutors.com/hotmath/hotmath_help/topics/infinite-geometric-series

唔撚識英文呀

咁就去食屎啦



仲爭執緊

其實唔係讀數嘅人真係唔洗咁執著,想要了解哂成件事就不如自己好好wiki下,睇唔明先上黎,仲會學得更多


我都唔明數呢家野已經好好討論,岩就岩錯就錯....
做咩要咁勞氣
2017-03-07 23:31:39
廢事有盲撚唔識google

If the common ratio&nbsp;r&nbsp;lies between&nbsp;−1 and&nbsp;1&nbsp;, we can have the sum of an infinite geometric series.

The sum&nbsp;S&nbsp;of an infinite geometric series with −1<r<1 is given by the formula,

S=a/(1−r), where a=first term, r=common ratio

when a=9/10, r=1/10
0.999999……
=9/10+9/100+9/1000+……+9/10^n (where n=infinity)
=(9/10)/(1-1/10)
=1

https://www.varsitytutors.com/hotmath/hotmath_help/topics/infinite-geometric-series

唔撚識英文呀

咁就去食屎啦



仲爭執緊

其實唔係讀數嘅人真係唔洗咁執著,想要了解哂成件事就不如自己好好wiki下,睇唔明先上黎,仲會學得更多


我都唔明數呢家野已經好好討論,岩就岩錯就錯....
做咩要咁勞氣


咁係幾難明嘅,你諗下解釋 0-1入面嘅 real number 數目 同0-100入面有嘅 real number 數目一樣多俾普通人聽,佢聽完就算明,內心都會抗拒一陣。

而0.9999....呢個問題,比較嚴謹嘅論證我係喺 real analysis 入面學嘅 我諗唔係讀數嘅人如果只係想靠人地回帖就搞清楚,都唔係一件易事
2017-03-07 23:40:35
Z_p呢

p-adic?
2017-03-07 23:42:44
廢事有盲撚唔識google

If the common ratio&nbsp;r&nbsp;lies between&nbsp;−1 and&nbsp;1&nbsp;, we can have the sum of an infinite geometric series.

The sum&nbsp;S&nbsp;of an infinite geometric series with −1<r<1 is given by the formula,

S=a/(1−r), where a=first term, r=common ratio

when a=9/10, r=1/10
0.999999……
=9/10+9/100+9/1000+……+9/10^n (where n=infinity)
=(9/10)/(1-1/10)
=1

https://www.varsitytutors.com/hotmath/hotmath_help/topics/infinite-geometric-series

唔撚識英文呀

咁就去食屎啦



仲爭執緊

其實唔係讀數嘅人真係唔洗咁執著,想要了解哂成件事就不如自己好好wiki下,睇唔明先上黎,仲會學得更多


我都唔明數呢家野已經好好討論,岩就岩錯就錯....
做咩要咁勞氣


咁係幾難明嘅,你諗下解釋 0-1入面嘅 real number 數目 同0-100入面有嘅 real number 數目一樣多俾普通人聽,佢聽完就算明,內心都會抗拒一陣。

而0.9999....呢個問題,比較嚴謹嘅論證我係喺 real analysis 入面學嘅 我諗唔係讀數嘅人如果只係想靠人地回帖就搞清楚,都唔係一件易事


Cardinality 啊嘛 中學都有教啦
2017-03-07 23:46:18
呢個po大概有兩類人
一類係屌樓主up廢話既
另一類就係中學數都未讀過既
不服來辯
2017-03-07 23:46:30
2017-03-07 23:49:14
假設0.99999999999999.......=1 正確
設x=0.9999999......=1
x-x=0 , 1-0.999......=0.00...01
0=0.0000...01
設k為一常數
做0.000...01*k=1
0*k=0.00.01*k
0=1
0=1+1=2
0=0+0+0=3
1=2=3=............

一蚊都無 都可以好滿足就係咁解
2017-03-07 23:50:25
假設0.99999999999999.......=1 正確
設x=0.9999999......=1
x-x=0 , 1-0.999......=0.00...01
0=0.0000...01
設k為一常數
0.000...01*k=1
0*k=0.00.01*k
0=1
0=1+1=2
0=0+0+0=3
1=2=3=............

一蚊都無 都可以好滿足就係咁解

點解呢個k存在?
2017-03-07 23:52:38
假設0.99999999999999.......=1 正確
設x=0.9999999......=1
x-x=0 , 1-0.999......=0.00...01
0=0.0000...01
設k為一常數
做0.000...01*k=1
0*k=0.00.01*k
0=1
0=1+1=2
0=0+0+0=3
1=2=3=............

一蚊都無 都可以好滿足就係咁解

仆街
睇到中間個prove笑死
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞