1/(1-0.999...) -> infinity
1/(1-1) = undefined
0.9999...係converge to 1,唔係等於1,
戇鳩鳩
第一個係鬼infinity
lim 1/[1-(1-x)] = lim 1/(x) =infinity
Where x tends to zero
呢個岩
但同0.999...無關
你話就係呀
不服來辯
上面成班係咁拋書包高人一等
有幾多人唔識微積分就低人一等?
你要講我夠識講計算係前人定義
如果佢地錯就你講咩都無用
本人覺得現實上一定唔同
差個d就差個d
上面有人用小學程度講
減左0.999...同減1
一個係零一個係唔知剩幾多
已經簡單帶出答案
1/3 =0.333..
3/3=0.999..
1/3 =0.333..已經錯啦
錯你老母西咩 錯咩呀
上面成班係咁拋書包高人一等
有幾多人唔識微積分就低人一等?
你要講我夠識講計算係前人定義
如果佢地錯就你講咩都無用
本人覺得現實上一定唔同
差個d就差個d
上面有人用小學程度講
減左0.999...同減1
一個係零一個係唔知剩幾多
已經簡單帶出答案
井底之蛙
上面有人用左個最易明既解法
1/3=0.333...
1/3 x 3 = 0.999...
1=0.999...
神奇既地方係因為佢有無限個9,所以個1就永遠唔存在
現實就係一個pizza切3份,合埋就係一個pizza
其實計數果陣為左方便計係會將 0.99999... take 做 1,例如好多計limit嘅數都係咁
但係數學邏輯上0.99999... 同 1 始終都係兩個數字泥 劃唔上等號
0.99999999999999係float
1係bool
datatype唔同 size都唔同
其實計數果陣為左方便計係會將 0.99999... take 做 1,例如好多計limit嘅數都係咁
但係數學邏輯上0.99999... 同 1 始終都係兩個數字泥 劃唔上等號
數學邏輯上就係0.999...=1
上面出咗幾個proof
你都係要話0.999...唔等於1
Between 泥你老母
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
無人理
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
無人理
識嗰啲唔會理你,唔識嗰啲更加唔會理你
其實同個topic冇乜關係
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
無人理
識嗰啲唔會理你,唔識嗰啲更加唔會理你
其實同個topic冇乜關係
Real= rational+irrational +transcendental=algebraic + transcendental
完
用數學方法證明
點解我唔可以用哲學證明
講過差果d就差果d
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
無人理
識嗰啲唔會理你,唔識嗰啲更加唔會理你
其實同個topic冇乜關係
其實只需要答呢個問題:what is a real number, assume you know what is rational numbers
無人理
識嗰啲唔會理你,唔識嗰啲更加唔會理你
其實同個topic冇乜關係
Real= rational+irrational +transcendental=algebraic + transcendental
完
Real = points can be found on number line
簡單直接