y = 0.4(x - 50270) + 0.2(50270 - 12570)
Substituting y/x = 0.1895, we get:
0.1895 = 0.4(x - 50270) / x + 0.2(50270 - 12570) / x
Simplifying this equation, we get:
0.1895x = 0.4(x - 50270) + 0.2(50270 - 12570)
0.1895x = 0.4x - 20108 + 7540
0.2105x = 12570
x = 59624.4
Therefore, the income is £59,624.40.
To find y, we can substitute this value of x into the third equation:
y = 0.4(x - 50270) + 0.2(50270 - 12570)
y = 0.4(59624.4 - 50270) + 0.2(50270 - 12570)
y = 9420.64
Therefore, the tax paid is £9,420.64.