[數學普及] Measure Theory (測度論) 簡介 ver. 2

330 回覆
67 Like 3 Dislike
2017-12-19 07:57:03
整緊個 blog , 順手改下D小錯, 兩邊會同步更新
2017-12-19 09:22:44
4.2個part有D唔明,

"(i) 如果 E_1 ⊆ E_2 ⊆ E_3 ⊆ ... ⊆ E_n ⊆ ...,


依度點解唔直接union哂所有 E_n set先,然後變成Lim n->inf E_n? 而要整個F set出黎,玩自己咁麻煩?

當然我地知道
μ (E_n) = μ (U_{i = 1}^n E_i)
但係 take limit 果陣, 我唔知右邊舊野係咪會變成 μ (U_{i = 1}^∞ E_i)

就好似 y_n = f(x_n) for all n, 如果 lim y_n = y, lim x_n = x
我地只知 lim f(x_n) = y, 但係我地唔知 f (x) = y 架喎
2017-12-19 09:58:12
4.2個part有D唔明,

"(i) 如果 E_1 ⊆ E_2 ⊆ E_3 ⊆ ... ⊆ E_n ⊆ ...,


依度點解唔直接union哂所有 E_n set先,然後變成Lim n->inf E_n? 而要整個F set出黎,玩自己咁麻煩?

當然我地知道
μ (E_n) = μ (U_{i = 1}^n E_i)
但係 take limit 果陣, 我唔知右邊舊野係咪會變成 μ (U_{i = 1}^∞ E_i)

就好似 y_n = f(x_n) for all n, 如果 lim y_n = y, lim x_n = x
我地只知 lim f(x_n) = y, 但係我地唔知 f (x) = y 架喎

例如 f(x) = 0 if x =/= 0, f(0) = 1
x_n = 1/n
y_n = 0
2017-12-19 21:01:17
Appendix: Proof of Theorem 2.

下文數學高能注意

Remark. 其實measurable functions有一個再 general d 的定義, 不過呢度我地用呢個定義已經足夠啦~~~ (唔服的話, 實質上我地呢度講緊的係 f: (X, A) -> (ℝ, B), B = Borel σ-algebra)

證明含有 "A ⇔ B" 的statement, 我地要證明兩樣野:
(i) A ⇒ B
(ii) B ⇒ A.

(i) 先假設 f measurable, 即係 , s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0),

f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.
⇔ 存在某個 N ∈ ℕ, 令到 for all n ≥ N.
⇔ 存在某個 N ∈ ℕ, 令到


所以
(*原來我之前漏左講咩叫兩個set 相等, 兩個sets A = B 意思係 A⊆B and A⊇B, 亦即係 x ∈ A ⇔ x ∈ B)

Theorem 1. 話比我地知, 係measurable set, 由於堆measurable sets係一個 σ-algebra, 因此 係 measurable (σ-algebra定義入面的 4, 再用 De Morgan's Law 同第3 就知 任意sequence of measurable sets 的 intersection 都係measurable)

然後 sequence of measurable set 的union係measurable, 所以 is measurable.

------------------------------------------------

(ii) 係開始之前, 我地先學一個係measure theory非常常用的procedure:
先證 non-negative function係岩, 然後因爲任何 function 都可以切成咁: f(x) = f+(x) - f-(x), where f+(x) = max{f(x), 0}, f-(x) = max{-f(x), 0} (簡單黎講 f+ 係 f positive的部份, f- 係 f negative 的部份), 所以所有 function 都岩


Q: 點解唔會出現 infinity - infinity?

好, 而家假設 is measurable for any a ∈ ℝ. 先假設 f 係 non-negative. 我地證明 f 係measurable, 即係要搵一個sequence of simple function, 而呢個sequence 的 pointwise limit 係 f.

我地先解決一個比較簡單的case 先: f is bounded. (Math 哲學: 搞唔掂咪試下 solve 下 d special cases 睇下有乜睇到先)
即係, 搵到一個 M > 0 令到 f(x) ≤ M for all x.

我地可以先將 [0, M] 斬開兩半, 即係 [0, M/2], (M/2, M]
我地定義

即係: , 睇番我地個假設, 所以 s_1 係simple function.
點整 s_2 呢? 將 [0, M] 斬開四等份, 即係 [0, M/4], (M/4, M/2], (M/2, 3M/4], (3M/4, M]
再定義

即係

所以 s_2 都係 simple function. (注意 )
最後定義

所以 s_n 都係 simple.
而 by construction, 0 ≤ f(x) - s_n(x) ≤ 1/2^n for any x ∈ X.
所以 (實際上再強 d, uniformly)

咁 f unbounded 點做呢? Given一個positive integer n, 我地定義

然後 f_n 都係 bounded, 而且都係measurable (點解呢? 諗下呢個set係咩樣? 如果大家都唔明的話我可以再講解下)), 所以對每個 n 我地都可以執到條sequence of simple function , 令到
之後神奇的野就發生啦: 我地定義 就搞掂

最後就要證明 .

Case 1:
如果 f(x) 係 finite 的話, 我地可以搵到一個 integer K 令到 f(x) < K, 即係話 f_n(x) = f(x) for all n ≥ K. 望返個construction, 即係話

for any m, k ≥ K, n ∈ ℕ


即係話



Case 2:
如果 f(x) = ∞ 點算呢, 咁樣的話, 我地知道


Q.E.D.


this reminds me the pain when taking the course
2017-12-20 00:04:30

this reminds me the pain when taking the course

2017-12-20 13:23:21

(i) 先假設 f measurable, 即係 , s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0),

呢到即係話f(x) > 2a?點解?


f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.

呢兩句都唔明

你計錯數
1. By definition of limit of sequence, there exists N such that
|s_n (x) - f(x)| < (f(x) - a) / 2 for all n ≥ N
拆absolute value 再移項得到
a < (f(x) + a) /2 < s_n (x) < something we dont care for all n ≥ N

2. Typo, 應該係 f(x) > a

但係都係唔明f(x) 點解會大過a
2017-12-20 13:28:58

(i) 先假設 f measurable, 即係 , s_n simple functions. 利用 limit of sequence 的定義 (ε = (f(x) - a) / 2 > 0),

呢到即係話f(x) > 2a?點解?


f(x) > c
⇔ 存在某個 N ∈ ℕ, 令到 s_n (x) > a for all n ≥ N.

呢兩句都唔明

你計錯數
1. By definition of limit of sequence, there exists N such that
|s_n (x) - f(x)| < (f(x) - a) / 2 for all n ≥ N
拆absolute value 再移項得到
a < (f(x) + a) /2 < s_n (x) < something we dont care for all n ≥ N

2. Typo, 應該係 f(x) > a

但係都係唔明f(x) 點解會大過a

oh 我想證 f^{-1} (a, infinity] = countable (union and / or interseciton) of some measurable sets
所姒第一句變左 f(x) > a
btw 再提多次個set 我寫錯左, 一陣間出返個post改番
2017-12-20 16:00:24
Erratum: 5.2 Appendix

係證明 measurable function 符合 f^{-1} (a, \infty] 係 measurable 果 part 我寫錯左D野 , 係呢度改番 (Exercise: Find out and explain the mistake in my original proof. )

我地證一個set 係 measurable 的話, 通常 technique 都係寫做一堆 COUNTABLY many (即係我地可以用positive integer label哂佢地, 即係可以寫做 E_1, E_2, ...) measurable sets 的 union and/or intersection
而家即係想將 f^{-1} (a, \infty] 寫做以上咁講的樣

而家用一個 measure theory 幾常用的 trick: 塞一個數字落兩個數字中間 (通常同 rational number 有關)

f(x) > a
⇔ 存在 N, K ∈ ℕ, 令到 s_n (x) > a + 1/K (> a) for any n ≥ N
⇔ 存在 N, K, 令到


插個 1/K 落去的理由:
係我原本的 proof 入面, => 係岩, 但係返轉頭未必岩 (諗番real numbers 個case: x_n > x 只代表 lim x_n x)

所以我地要格硬攝一個number 令到個 strict inequality 都岩, 即係 x_n > x + y (y > 0) 就會有 lim x_n ≥ x + y > x
但係呢d number 要 countable咁多 (望返 σ-algebra 的定義)
in principle 我地唔用1/K, 用 x_K > 0, {x_K} decreases to 0都可以, as long as 堆數字係countable.
2017-12-20 16:03:32
Erratum: 5.2 Appendix

係證明 measurable function 符合 f^{-1} (a, \infty] 係 measurable 果 part 我寫錯左D野 , 係呢度改番 (Exercise: Find out and explain the mistake in my original proof. )

我地證一個set 係 measurable 的話, 通常 technique 都係寫做一堆 COUNTABLY many (即係我地可以用positive integer label哂佢地, 即係可以寫做 E_1, E_2, ...) measurable sets 的 union and/or intersection
而家即係想將 f^{-1} (a, \infty] 寫做以上咁講的樣

而家用一個 measure theory 幾常用的 trick: 塞一個數字落兩個數字中間 (通常同 rational number 有關)

f(x) > a
⇔ 存在 N, K ∈ ℕ, 令到 s_n (x) > a + 1/K (> a) for any n ≥ N
⇔ 存在 N, K, 令到


插個 1/K 落去的理由:
係我原本的 proof 入面, => 係岩, 但係返轉頭未必岩 (諗番real numbers 個case: x_n > x 只代表 lim x_n x)

所以我地要格硬攝一個number 令到個 strict inequality 都岩, 即係 x_n > x + y (y > 0) 就會有 lim x_n ≥ x + y > x
但係呢d number 要 countable咁多 (望返 σ-algebra 的定義)
in principle 我地唔用1/K, 用 x_K > 0, {x_K} decreases to 0都可以, as long as 堆數字係countable.



lm
2017-12-20 16:32:44
係咪已經陣亡哂
2017-12-20 17:32:11
4.2個part有D唔明,

"(i) 如果 E_1 ⊆ E_2 ⊆ E_3 ⊆ ... ⊆ E_n ⊆ ...,


依度點解唔直接union哂所有 E_n set先,然後變成Lim n->inf E_n? 而要整個F set出黎,玩自己咁麻煩?

當然我地知道
μ (E_n) = μ (U_{i = 1}^n E_i)
但係 take limit 果陣, 我唔知右邊舊野係咪會變成 μ (U_{i = 1}^∞ E_i)

就好似 y_n = f(x_n) for all n, 如果 lim y_n = y, lim x_n = x
我地只知 lim f(x_n) = y, 但係我地唔知 f (x) = y 架喎

例如 f(x) = 0 if x =/= 0, f(0) = 1
x_n = 1/n
y_n = 0


係咪有機會 U_{i = 1}^∞ E_i 同 Lim n->inf (U_{i = 1}^∞ E_i) 會有分別?

Inf有D怪,因為一定要用lim黎define

好似你個例子既inf版本會變成
f(x) = 0 if x =/= inf, f(inf) = 1

將個 limit sign 拉入去個 function 呢步有機會出問題
即係問緊 lim f(x_n) 係咪等於 f (lim x_n)
如果 f 唔 continuous 就會有機會出現 lim f(x_n) =/= f (lim x_n)

係measure 呢個case都係 (雖然嚴格上黎講set 無limit, 得liminf 同 limsup, 未學過唔駛理)
U_{i = 1}^∞ E_i intuitively 可以睇做"lim" U_{i = 1}^n E_i
咁樣就會變成問
lim μ (U_{i = 1}^n E_i) =?= μ ( "lim" U_{i = 1}^n E_i)
2017-12-20 17:34:38
係咪已經陣亡哂

第三頁就陣亡左
利申:eng仔,grad左十年重識develop 返green theorem 黎用

係fancy 數學黎講, 咩 green's divergence theorem 都係 stokes' theorem 的special case
2017-12-20 17:46:06
係咪已經陣亡哂

死亡緊,比少少時間消化下
2017-12-20 18:04:21
係咪已經陣亡哂

死亡緊,比少少時間消化下

唔緊要, 可以等大家get到大部份先繼續

有時可能係我表達唔清楚, 仲有咩唔明係度問啦
2017-12-20 18:18:05
Erratum: 5.2 Appendix

係證明 measurable function 符合 f^{-1} (a, \infty] 係 measurable 果 part 我寫錯左D野 , 係呢度改番 (Exercise: Find out and explain the mistake in my original proof. )

我地證一個set 係 measurable 的話, 通常 technique 都係寫做一堆 COUNTABLY many (即係我地可以用positive integer label哂佢地, 即係可以寫做 E_1, E_2, ...) measurable sets 的 union and/or intersection
而家即係想將 f^{-1} (a, \infty] 寫做以上咁講的樣

而家用一個 measure theory 幾常用的 trick: 塞一個數字落兩個數字中間 (通常同 rational number 有關)

f(x) > a
⇔ 存在 N, K ∈ ℕ, 令到 s_n (x) > a + 1/K (> a) for any n ≥ N
⇔ 存在 N, K, 令到


插個 1/K 落去的理由:
係我原本的 proof 入面, => 係岩, 但係返轉頭未必岩 (諗番real numbers 個case: x_n > x 只代表 lim x_n x)

所以我地要格硬攝一個number 令到個 strict inequality 都岩, 即係 x_n > x + y (y > 0) 就會有 lim x_n ≥ x + y > x
但係呢d number 要 countable咁多 (望返 σ-algebra 的定義)
in principle 我地唔用1/K, 用 x_K > 0, {x_K} decreases to 0都可以, as long as 堆數字係countable.

好似明呢part了
然而 ii 仲未睇
2017-12-20 18:33:17
Erratum: 5.2 Appendix

係證明 measurable function 符合 f^{-1} (a, \infty] 係 measurable 果 part 我寫錯左D野 , 係呢度改番 (Exercise: Find out and explain the mistake in my original proof. )

我地證一個set 係 measurable 的話, 通常 technique 都係寫做一堆 COUNTABLY many (即係我地可以用positive integer label哂佢地, 即係可以寫做 E_1, E_2, ...) measurable sets 的 union and/or intersection
而家即係想將 f^{-1} (a, \infty] 寫做以上咁講的樣

而家用一個 measure theory 幾常用的 trick: 塞一個數字落兩個數字中間 (通常同 rational number 有關)

f(x) > a
⇔ 存在 N, K ∈ ℕ, 令到 s_n (x) > a + 1/K (> a) for any n ≥ N
⇔ 存在 N, K, 令到


插個 1/K 落去的理由:
係我原本的 proof 入面, => 係岩, 但係返轉頭未必岩 (諗番real numbers 個case: x_n > x 只代表 lim x_n x)

所以我地要格硬攝一個number 令到個 strict inequality 都岩, 即係 x_n > x + y (y > 0) 就會有 lim x_n ≥ x + y > x
但係呢d number 要 countable咁多 (望返 σ-algebra 的定義)
in principle 我地唔用1/K, 用 x_K > 0, {x_K} decreases to 0都可以, as long as 堆數字係countable.

好似明呢part了
然而 ii 仲未睇

ii 會易明d, 比較concrete
2017-12-20 18:36:19
有冇可能講到Lp spaces, Riesz representation theorem或者Radon-Nikodym theorem?
2017-12-20 19:31:39
學mathematical finance個陣Radon-Nikodym derivatives聽完都係好撚抽象,唔知點解需要有件咁既事
btw 留名再睇

equivalent martingale measure
2017-12-20 19:34:26

Q: 點解唔會出現 infinity - infinity?

因爲唔會同時係positive part 同 negative part?


最後定義

所以 s_n 都係 simple.
而 by construction, 0 ≤ f(x) - s_n(x) ≤ 1/2^n for any x ∈ X.

why 1/2^n but not M/2^n ?


咁 f unbounded 點做呢? Given一個positive integer n, 我地定義

然後 f_n 都係 bounded, 而且都係measurable (點解呢? 諗下呢個set係咩樣? 如果大家都唔明的話我可以再講解下))

f_n^-1 (a, inf] = f^-1 (a, inf] ?
2017-12-20 21:37:53
有冇可能講到Lp spaces, Riesz representation theorem或者Radon-Nikodym theorem?

你想我講證明? 應該超過九成日陣亡喎
但係應用同堆theorem 大概講緊乜我可以講
2017-12-20 21:42:47

Q: 點解唔會出現 infinity - infinity?

因爲唔會同時係positive part 同 negative part?


最後定義

所以 s_n 都係 simple.
而 by construction, 0 ≤ f(x) - s_n(x) ≤ 1/2^n for any x ∈ X.

why 1/2^n but not M/2^n ?


咁 f unbounded 點做呢? Given一個positive integer n, 我地定義

然後 f_n 都係 bounded, 而且都係measurable (點解呢? 諗下呢個set係咩樣? 如果大家都唔明的話我可以再講解下))

f_n^-1 (a, inf] = f^-1 (a, inf] ?

1. Yes
2. Oh Typo 證明你有細心睇 thanks a lot
3. 差少少,記得分case (呢科經常要分case)
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞