measure theory 同太多field 有connections, 真係好難有 “the” way to teach. 可能同小弟background 有關, 我覺得用 l^p, Banach, Hilbert spaces in finite dimensional case 去 illustrate 部份measure theory concepts 其實幾幫到手, 有時比Riemann-Lebesgue 嗰view清晰d
了解, 我詳睇返師兄前面d notes, 感覺如果後面你要講返點解 Lebesgue integral 真係可以 extend 到 Riemann integral (三大問題, Borel sets), 最後原點都一定要cover返 Borel sets 同部份 basic topology on R or R^n.
Elias2018-01-12 07:24:01
real line 易搞好多, 基本上知open set = disjoint union of countably many open intervals 就ok
somehow我唔打算講 R^n, n > 1, 我寧願當product measure算...
狐狸叔叔2018-01-12 08:44:27
R^n 唔係都係open ball gen出黎咩?
Elias2018-01-12 09:17:02
R^n個Lebesgue measure可以係用open ball砌 (as outer measure), 亦都可以用n 個 one-dimensional ge Lebesgue measure 去砌 (as a product measure)
呢D執過前面堆文之後會再講