放棄巴點睇SNN
堆proof too long didnt read
放棄巴點睇SNN
堆proof too long didnt read
新野嚟?有冇link?
突發 媽呀 個supervisor覆左cold email 佢下星期香港有conference話可以見我
佢咩U?你極想跟佢?係就開始狂J佢papers
當時第一封cold email就咁講research interest
第二封我就睇左佢大約一半同重點既paper 寫左兩個research proposal send比佢
跟住就有reply了
媽呀 我淨係cold email左佢一個 因為淨係想跟佢 我諗住冇reply就下年再算
不過佢係你地睇唔起澳洲 melb u
放棄巴點睇SNN
堆proof too long didnt read
新野嚟?有冇link?
Self-Normalizing Neural Networks
遲啲睇睇
太長唔quote太多
以下講嘅我唔太肯定啱唔啱
通常討論sequence of random variables(in particular markov chain),我哋會將佢諗成一串sequence of numbers
而個dynamic就係將串數字移左或者移右一格
例如將
(x1,x2,x3,....)
依串數字shift一shift變
(x2,x3,x4,...)
ergodicity就話你知你不斷咁樣shift法,你會見到哂所有嘅"random pattern"(因為咁shift法會行勻成個space), 個randomness就measured by你個probability
你可以想像如果個markov chain要滿足咁嘅條件,佢就應該唔會係periodic,transient之類
[quote][quote][quote]
太長唔quote太多
以下講嘅我唔太肯定啱唔啱
通常討論sequence of random variables(in particular markov chain),我哋會將佢諗成一串sequence of numbers
而個dynamic就係將串數字移左或者移右一格
例如將
(x1,x2,x3,....)
依串數字shift一shift變
(x2,x3,x4,...)
ergodicity就話你知你不斷咁樣shift法,你會見到哂所有嘅"random pattern"(因為咁shift法會行勻成個space), 個randomness就measured by你個probability
你可以想像如果個markov chain要滿足咁嘅條件,佢就應該唔會係periodic,transient之類
做咩派膠比你諗起果個人