計劃進修PhD/Research討論區(19) 早知如此, 何必當初

1001 回覆
12 Like 3 Dislike
2017-05-26 15:31:04


有得乘未必有得除#hehe

又黎料啦
等學野

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)

2017-05-26 15:36:59

又黎料啦
等學野

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)



2017-05-26 15:41:20


有得乘未必有得除#hehe

又黎料啦
等學野

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)

Contrust field之後就睇唔明
利伸 睇緊elementary real analysis 所以明construct field是乜
2017-05-26 17:01:52


有得乘未必有得除#hehe

又黎料啦
等學野

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)

Contrust field之後就睇唔明
利伸 睇緊elementary real analysis 所以明construct field是乜

呢啲abstract algebra嚟
2017-05-26 17:09:54
我又拋下磚先
其實根據定義 0^a for all real a 係咪都係undefined?
因為x^y:=exp(y ln(x))
就算for a>=0, 因為ln(0)=negative infinity
所以0^a都係undefined?
不過係咪數佬為左方便起見 先define 0^0=1, 0^a=0 for a>0?
2017-05-26 17:25:53
我又拋下磚先
其實根據定義 0^a for all real a 係咪都係undefined?
因為x^y:=exp(y ln(x))
就算for a>=0, 因為ln(0)=negative infinity
所以0^a都係undefined?
不過係咪數佬為左方便起見 先define 0^0=1, 0^a=0 for a>0?

但係lim->0 e^(xlnx)=1

咁即係要argue continuity?
2017-05-26 17:59:36
2017-05-26 18:06:02

2017-05-26 18:10:34
我又拋下磚先
其實根據定義 0^a for all real a 係咪都係undefined?
因為x^y:=exp(y ln(x))
就算for a>=0, 因為ln(0)=negative infinity
所以0^a都係undefined?
不過係咪數佬為左方便起見 先define 0^0=1, 0^a=0 for a>0?

但係lim->0 e^(xlnx)=1

咁即係要argue continuity?

你可以理解成exp(-infinity)=0
實際上一般好少會理0^a as a function in a
就算睇x^y,一般都係fix x或者fix y再討論

但係可以就咁塞個not real number落去?
Take limit嘅話又好似答唔到個問題咁
2017-05-26 18:10:49

又黎料啦
等學野

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)

Contrust field之後就睇唔明
利伸 睇緊elementary real analysis 所以明construct field是乜

呢啲abstract algebra嚟

2017-05-26 18:15:04
問下先 我見本real analysis書有construct fields of real number from rational numbers
咁construct fields of rational numbers from integers唔係都應該係同一個idea ?
2017-05-26 18:15:49
問下先 我見本real analysis書有construct fields of real number from rational numbers
咁construct fields of rational numbers from integers唔係都應該係同一個idea ?

I mean 方法可能唔同 但basic concept都係一樣?
2017-05-26 18:36:25

劉明

當integer係group,division咪唔會close,會走左去rational number

你依句其實唔太make sense

所謂嘅除法係整個inverse俾個乘法,用你個例子,如果淨係睇integer,你唔會搵到一個integer令到2x嗰個integer=1

但唔代表咁樣就定義唔到除法人類就係construct rational number嚟解決依個問題

remark: 用啲數學terms,construct rational number嘅方法就係localization of Z/construct field of fraction of Z,再fancy啲可以睇做consider grothendieck group of (Z*,multiplication)

Contrust field之後就睇唔明
利伸 睇緊elementary real analysis 所以明construct field是乜

呢啲abstract algebra嚟


2017-05-26 18:40:44


2017-05-26 18:44:33
問下先 我見本real analysis書有construct fields of real number from rational numbers
咁construct fields of rational numbers from integers唔係都應該係同一個idea ?

Dedekind cut?
Real number係靠整個partition符合well ordering principle,archimedean property.

btw CS construct integer個方法都幾得意,{},{{}},{{{}}}...

2017-05-26 18:45:10



吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞