之前有位巴打講嗰兩本都好出名,我之前主要都係睇PRML(PRML 出名到你google 呢4個letters, 第一個result 就係本pdf

) 不過睇prml 要對住佢嗰errata 黎睇,佢都幾多位有錯,如果做做吓exercise 快現做唔倒落去,你最好對對errata 先,有可能條問題出錯咗
有本我好鍾意嘅ML 入門書係
https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069
雖然佢只係講linear model,但係cover 晒ML應有嘅concept, 同埋會題少少同statistical learning theory 有關嘅嘢
仲有一本叫BRML, 呢本係probability graphical model 嘅入門書,同時都cover 大部份嘅ML algorithm, 亦會focus on Bayesian approach 去睇佢地,不過有啲飛飛地書,可以用黎check 吓自己係唔係真係明嗰個topic
如果唔鍾意Bayesian approach可以睇EoSL (我冇乜點睇過,不過如果你background 係stats 嘅話,可能會啱口味啲)
又,如果啲stats 好唔得,要惡補,可以睇
https://link.springer.com/book/10.1007/978-0-387-21736-9
不過正路睇啲textbook 都夠做嘅。
返而有啲multivariable calculus 嘅嘢,你最好睇吓mit ocw 18.02
MIT ocw 18.06 都最好睇吓,如果你啲linear algebra 唔太熟嘅話
基本上上班講嘅都cover 咗我當年讀master 睇過嘅嘢關於machine learning 嘅嘢嘅6/7成