幾個少少suggestions
1. 學好啲classical machine learning 先,make sure 你知佢地點運作,有乜(hyper) parameter, 最好implement 過一次證明自己真係識,而唔係睇咗當識。 因為實際上,好多時嗰problem 未必有咁多data 畀你去fit deep learning model, 同埋學呢啲theory係幫你distill 返machine learning 嗰本質係乜
2. 學啲classical machine learning algorithm嗰時順便train up 埋自己對probability 同 stats 嘅知識,machine learning ,簡單例子,你學Linear regression就要知同佢同MLE同MAP 有乜關係,佢同其他algorithm有乜關係,呢啲對於你要自己度Loss function 嗰最好有用
3. 唔好預上堂你就可以明,除非你本身好勁,數底好好,唔係嘅要expect 睇好多書,好多時你以為明,其實係因為冇諗清楚。最好做吓textbook 啲exercise, make sure 自己識,你要當自己讀緊數,因為根本上佢係
4. Computer science 知識好重要,有幾會應該take CS course 應該take 多啲,因為就算係寫script 都有分寫得好唔好,同埋CS education 會畀倒你mind set/toots 去tackle 一個問題。其本上你有呢啲mind set 你就唔應該再問「應該學邊啲library,用R 定python 好」呢類問題。 我會覺得CS grad + proficient math knowledge 係最好嘅data scientist background
同埋,data scientist 應該都要知 成條pipeline 點起同有能力起,呢啲唔洗特別上堂學,你有CS底,應該一邊睇doc 一邊set 就得,因為你應該心入面已經知啲tools 做緊乜,你只係要駁埋佢地,呢啲係CS education 畀你嘅嘢
5. 諗清楚自己係唔係真係想做data scientists

好多時做嘢真係9試(好聽啲就educated guess)唔知work 唔work㗎喳,真係同普通科學家做實驗一樣,可以做到好depress。
business 人又成日唔知扮知,你要好耐心咁教導佢地你做緊嘅哩其實係做緊乜,有乜用,唔係嘅話,佢地嘅落差會好大,因為佢地真係覺得AI 好勁,可以乜問題都解決倒㗎
