(a) 我地淨係想將D roots洗牌, 所以未加料之前的野我地唔希望郁到佢
(b) 我地唔希望破壞加左料之後的field的結構
(c) 既然係洗牌即係我地能夠將洗牌的步驟倒返轉頭
If E is a field extension of F, and f: E -> E be a function shuffling the roots according to the rule above,
(a) f(x) = x for any x in F.
(b) f(xy) = f(x)f(y) and f(x + y) = f(x) + f(y) for any x, y in E.
(c1) for any x, y in E, f(x) = f(y) implies x = y.
(c2) given any y in E, there is x in E such that f(x) = y.
(i) f(0) = 0
因為 f(0) = f(0 + 0) = f(0) + f(0), 兩邊減去f(0)得出 f(0) = 0
(ii) f(1) = 1
因為 f(1) = f(1^2) = [f(1)]^2, 所以 f(1) = 1 or 0, 但係(c1) rule out 左f(1) = 0呢個可能
(iii) f(-x) = -f(x)
(iv) f(1/x) = 1/f(x) if x ≠ 0
f(a + b sqrt(2)) = f(a) + f(b sqrt(2)) = f(a) + f(b) f(sqrt(2))
f(a) + f(b) f(sqrt(2)) = a + b f(sqrt(2))
(i) f(sqrt{2}) = sqrt{2}, 呢個case就會變左 f(x) = x for all x in Q(sqrt{2}) (呢種map我地叫identity map)
(ii) f(sqrt{2}) = -sqrt{2}, 呢個case就會有 f(a + b sqrt(2)) = a - b f(sqrt(2))
問題6: 試驗證以上兩個 f 都符合 (a), (b), (c1), (c2).
(i) f(sqrt{2}) = sqrt{2}, f(sqrt{3}) = sqrt{3}
(ii) f(sqrt{2}) = -sqrt{2}, f(sqrt{3}) = sqrt{3}
(iii) f(sqrt{2}) = sqrt{2}, f(sqrt{3}) = -sqrt{3}
(iv) f(sqrt{2}) = -sqrt{2}, f(sqrt{3}) = -sqrt{3}
[f(sqrt{2})]^2 = (sqrt{3})^2
f((sqrt{2})^2) = 3
.f(2) = 3
2 = 3