[9up數學] 五次方程沒有解?

kai龍(五毛)

251 回覆
187 Like 13 Dislike
馬上風 2021-06-20 13:57:27
出文未
歌本哈根大師 2021-06-20 13:59:37
中學背晒啲式,sub數計架咋麻,都唔洗知佢點解既,洗唔洗咁串
Alex_Ferguson 2021-06-20 14:11:31
search root可以用calculus
mean value theorem+Rolle‘s Theorem
墨儒 2021-06-20 14:12:45
唔洗知點解? 似係你本人問題
kai龍(五毛) 2021-06-20 14:26:35
我好奇佢讀咩
Alex_Ferguson 2021-06-20 14:44:32
講錯佐
係應該用IVT
Alex_Ferguson 2021-06-20 14:52:05
我唔係math major不過都鍾意睇吓math
kai龍(五毛) 2021-06-20 14:55:41
個topic係想搵一個closed form而唔係approximate佢
Alex_Ferguson 2021-06-20 14:58:01
我頭先只係睇佐post title 下意識留言
歌本哈根大師 2021-06-20 15:09:07
咁真係喎,中學冇教過條式點derive出黎,淨係叫你點solve equations,學完都1999咁
狗餅人 2021-06-20 15:32:12
推 有心
電競工程師 2021-06-20 17:20:19
連登學術post通病,要求每個參與者都好熟悉嗰科,唔容許"stupid question"
kai龍(五毛) 2021-06-20 17:34:19
3. Roots的洗牌機

證明五次方程無一般的radical solution的其中一個key idea係: 將d roots洗牌

但係我地唔係求其亂咁洗, 有幾樣野希望保留:
(a) 我地淨係想將D roots洗牌, 所以未加料之前的野我地唔希望郁到佢
(b) 我地唔希望破壞加左料之後的field的結構
(c) 既然係洗牌即係我地能夠將洗牌的步驟倒返轉頭


每一種洗牌的方法我地都可以用一個function黎形容, 用嚴謹的寫法將上面的條件重寫一次我地有:
If E is a field extension of F, and f: E -> E be a function shuffling the roots according to the rule above,
(a) f(x) = x for any x in F.
(b) f(xy) = f(x)f(y) and f(x + y) = f(x) + f(y) for any x, y in E.
(c1) for any x, y in E, f(x) = f(y) implies x = y.
(c2) given any y in E, there is x in E such that f(x) = y.

Remark: 如果有學過abstract algebra的話, 如果有個function f: E -> E satisfies (a) & (b), 一係 f 符合 (c1), 一係 f(x) = 0 for all x in E.

而根據呢四條規則就知道,
(i) f(0) = 0
因為 f(0) = f(0 + 0) = f(0) + f(0), 兩邊減去f(0)得出 f(0) = 0
(ii) f(1) = 1
因為 f(1) = f(1^2) = [f(1)]^2, 所以 f(1) = 1 or 0, 但係(c1) rule out 左f(1) = 0呢個可能
(iii) f(-x) = -f(x)
(iv) f(1/x) = 1/f(x) if x ≠ 0


Given一個加左root的field, 我地係可以計到有d咩function(s)符合以上的特性

(a) Q(sqrt{2}) over Q:
Recall Q(sqrt{2}) 係所有 a + b sqrt{2} 咁ge樣的數字 (a, b係rational), 根據 (b)

f(a + b sqrt(2)) = f(a) + f(b sqrt(2)) = f(a) + f(b) f(sqrt(2))


根據(a),

f(a) + f(b) f(sqrt(2)) = a + b f(sqrt(2))


由呢條式我地知道 f 係完全由 f(sqrt(2)) 的value決定

由於我地先前講過我地想 f 將某個polynomial的root洗牌, 簡單計算知道 lowest degree polynomial in Q[x] with leading coefficient 1 which has sqrt{2} as a root係 x^2 - 2, 呢個polynomial的另一個root係 -sqrt{2}, 所以 f(sqrt{2}) 有兩個choices:
(i) f(sqrt{2}) = sqrt{2}, 呢個case就會變左 f(x) = x for all x in Q(sqrt{2}) (呢種map我地叫identity map)
(ii) f(sqrt{2}) = -sqrt{2}, 呢個case就會有 f(a + b sqrt(2)) = a - b f(sqrt(2))


問題6: 試驗證以上兩個 f 都符合 (a), (b), (c1), (c2).


睇完(a)個例子之後, 大家會發覺, 呢D functions係咪完全由加入去的料的value under f黎決定? 答案係係的, 所以之後的例子我地就可以捉住呢D醋同鹽黎玩

(b) Q(sqrt{2}, sqrt{3}) over Q:
經過計算, 包含哂sqrt{2}, sqrt{3}做roots的最低次的polynomial係 (x^2 - 2)(x^2 - 3), 呢個polynomial另外有兩個roots: -sqrt{2}, -sqrt{3}

見到有四個唔同的數字, 如果讀緊(完) DSE core的你, 諗下有幾多種唔同的permutations? 心水清就知係 4P4 = 4! = 24, 但係實際上符上 (a), (b), (c1), (c2) 要求的得4個:
(i) f(sqrt{2}) = sqrt{2}, f(sqrt{3}) = sqrt{3}
(ii) f(sqrt{2}) = -sqrt{2}, f(sqrt{3}) = sqrt{3}
(iii) f(sqrt{2}) = sqrt{2}, f(sqrt{3}) = -sqrt{3}
(iv) f(sqrt{2}) = -sqrt{2}, f(sqrt{3}) = -sqrt{3}


你可能會問, 點解唔可以 f(sqrt{2}) = sqrt{3}?
答案係, square both sides得出

[f(sqrt{2})]^2 = (sqrt{3})^2
f((sqrt{2})^2) = 3
.f(2) = 3
2 = 3


Impossible!
f(sqrt{2}) = -sqrt{3} 同理
==============================================
(待續)
kai龍(五毛) 2021-06-20 17:34:56
上面有人話太多名詞所以我改緊篇野
kai龍(五毛) 2021-06-20 17:40:02
Contents:
#1 - Part 1
#9 - Part 2
#115 - Part 3

Errata:
#6: Ignore this

#9: "例如R同Q的algebraic closure係C."
-> "例如R的algebraic closure係C."
kai龍(五毛) 2021-06-20 17:46:26
咁樣會唔會易睇D
kai龍(五毛) 2021-06-20 17:49:22
Contents:
#1 - Part 1
#9 - Part 2
#115 - Part 3

Errata:
#6: Ignore this

#9: "例如R同Q的algebraic closure係C."
-> "例如R的algebraic closure係C."

#115: "Remark: 如果有學過abstract algebra的話, 如果有個function f: E -> E satisfies (a) & (b), 一係 f 符合 (c1), 一係 f(x) = 0 for all x in E."
-> "Remark: 如果有學過abstract algebra的話, 如果有個function f: E -> E satisfies (b), 一係 f 符合 (c1), 一係 f(x) = 0 for all x in E."
凝同蜜露 2021-06-20 18:00:29
聽講過
想了解多啲
lm
門口掃地僧 2021-06-20 18:04:10
數學界有好多天才,個人認為當中最天才嘅天才係拉馬努金同黎曼,可惜天妒英才,兩個都活唔過40歲。如果俾佢地活多30年,數學發展至少快100年
kai龍(五毛) 2021-06-20 18:12:36
好難比 Ramanujan只係掟左一堆野出黎
Galois係直頭創造左現代純數學的五大分支之一
馬上風 2021-06-20 18:22:04
ok
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞