IT討論區(79) 就嚟行行NPL

好天斬落雨柴

1001 回覆
3 Like 3 Dislike
手一黏便緊(UTC+9 2020-04-09 09:37:55
Fibonacci既四種寫法
嘴遁師青花 2020-04-09 09:39:33
原來係咁
任平生 2020-04-09 09:40:51
新界西牛 2020-04-09 09:54:16
你真心咩(壞左) 2020-04-09 09:58:21
一直都係學話要夠簡潔
原來所有野逐行逐行寫反而仲好?
你真心咩(壞左) 2020-04-09 10:03:01
如果想搵份好啲既P位
操leetcode同用udemy啲online resources以外仲有無加分位
intern exp. 已經輸在起跑線
利申有做緊 但係唔快
豬狗不如 2020-04-09 10:07:40
講緊interview個下姐,寫one line code只會令人撇不著頭腦
Code4Food 2020-04-09 10:15:22
第五種寫法:用Binet's Formula但唔準有rounding error。
手一黏便緊(UTC+9 2020-04-09 10:17:10
呢個係第四種
Code4Food 2020-04-09 10:26:50
Assuming arithmetic operations are O(1) (which is not true when dealing with big-integers). There are at least 5 methods I know.

1. naive recursion, O(k^n) time and O(n) space.
2. memoizied recursion, O(n) time and space.
3. loop with 3 variables. O(n) time, O(1) space.
4. matrix multiplication, O(log n) time , O(1) space.
5. Binet's formula without rounding error. (complexity is not trivial to analyze)
Code4Food 2020-04-09 10:27:55
For matrix multiplication, there is an optimization to use only half of the matrix but that optimization does not change the overall time complexity.
手一黏便緊(UTC+9 2020-04-09 10:33:15
3唔計啦...只不過係2既ring buffer版
Binet做一次size estimation 決定用幾多dp 再用long integer去計 O(log n * multiplication complexity(log F(n)))?
手一黏便緊(UTC+9 2020-04-09 10:34:52
btw log(F(n))即係n
Code4Food 2020-04-09 10:39:20
2 & 3 are different. 2 is usually top-down where as 3 is bottom-up.

To use Binet's formula without rounding errors, one needs to deal with rational number arithmetics. That requires adding fractions, which requires computing GCD and division. I don't have a good estimate for the time complexity.

See:
https://forum.hkgolden.com/thread/6701927/page/1
手一黏便緊(UTC+9 2020-04-09 11:02:56
我自己唔係太過覺得bottom up同top down有好大分別
唔只因為complexity一樣 仲有係可以好簡單咁轉換兩者 (with certain memory overhead which can be significant in some real life scenario)

我覺得without rounding error係只需要結果without rounding error就得 而唔駛每步概念上都0 error
所以我覺得只需要做O(log(F(n)))個dp既long fix point arithmetic 令final error <1就得
就算係中途步驟都要完全無error 留意返phi^n同pho^n都係以2^n為分母既分數 分子都係Q(sqrt(5))黎 所以其實唔需要fraction運算
手一黏便緊(UTC+9 2020-04-09 11:08:46
Btw考慮返phi^n同pho^n用Q(sqrt(5))去計 其實已經effectively做緊recurrence relationship既計算
所以binet用黎做estimation好過真係用黎落手計
作code家 2020-04-09 11:14:12
i-vtec 2020-04-09 11:14:16
有冇巴打wfh打機
屋企好難做到野
我是一粒塵 2020-04-09 11:21:57
新界西牛 2020-04-09 11:22:43
睇住劇做
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞