所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將唔同事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
明白啲公式點嚟就唔難記
個問題就係唔明點嚟
介唔介意具體講多少少?
或者舉啲例子,當中講吓你點樣唔明法?唔明邊一個位?
例如教個啲f(x)=2x+y+10 g(x)=2f(x) (當然會複雜啲)
睇老師做個陣 心諗啲xxyy做乜鳩搬嚟搬去有時唔見咗有時又出現番
g(x) = 2 (2x+y+10) = 4x+2y+20
咁都唔明不如去驗腦
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
Arts: Value Judgment
Sciences; Causal Judgment
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
Arts: Value Judgment
Sciences; Causal Judgment
arts: 諗下條路去邊
sciences: 諗下條路由邊度出發
咁樣諗淺白易明好多
覺得中學公式難背好多時你因為教數果個教得差
依家幫緊中學雞補習
佢唔知點解x^2-(a+b) x+ab=0係點黎
但係就知點樣做 a^2+b^2既題目
佢連題目點解要let a, b be the roots of quadratic equation 都唔知
咁真係好難背啊嘛
其實點解sum of root係a+b , product of root係ab , 教科書似乎一直以嚟都冇解釋過
其實點解sum of root係a+b , product of root係ab , 教科書似乎一直以嚟都冇解釋過
呢個有咩好解釋
要解嘅係Sum of roots = -b/a
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
我get到喎
啫係類似菠蘿包同腸仔包之間,搵番佢哋係用乜嘢麵粉做出嚟,啱唔啱?
其實點解sum of root係a+b , product of root係ab , 教科書似乎一直以嚟都冇解釋過
所以pg啲math course大把open book take home exam
俾你睇晒書同Google都未必識答
Yup. Unseen problem is often difficult.
e.g. on x^n + y^n = z^n
我個fd 已經讀緊math phd
同我講數學家做嘅野係睇出事物嘅本質
搵出佢地嘅共點
而文學家就將同一事物給予唔同定義
所以我諗所謂嘅mathematical mindset應該係將一啲好似好複雜嘅問題搵出佢地本來嘅面目去破解
好啦我講到好抽象
我get到喎
啫係類似菠蘿包同腸仔包之間,搵番佢哋係用乜嘢麵粉做出嚟,啱唔啱?
e.g. 常用的比喻是一個軟膠咖啡杯即使經扭曲重塑為一個「冬甩」(甜甜圈) 狀物件,在拓撲學來說兩個物件仍是一樣,關鍵在於物件中相鄰兩點是否有變。
好似兩樣野係唔同 但可能可以用某種同樣嘅mathematical meaning
e.g.你講費瑪個條式 佢話呢啲問題其實解決左唔係重要在佢解決左條題目 而係在於個mathematician develop左啲咩新嘅tools去解決 個啲新develop出黎嘅mathematical insight先係重點 隨時可以開辟一個新嘅領域 甚至令science/engineering上有突破
其實點解sum of root係a+b , product of root係ab , 教科書似乎一直以嚟都冇解釋過
Dse程度可以理解下啲formula嘅,好多都好有趣,大學stat就不了,記完條式都唔夠memory喇葉師傅