[數撚圍爐區] 將一個波分成五份, 然後砌兩個同原本一樣的波的鬼故事 (108)

膠智的kai龍

695 回覆
0 Like 10 Dislike
忒修斯之船 2025-03-28 15:25:22
Ever17 2025-03-28 17:10:22
唔係我都唔係為教學 又唔係數學系 點教你
青山巫女 2025-03-28 23:13:35
Lol oh its an open invite 🙈
I so low level當興趣睇d undergrad stuff
有問題都too trivial dare not post here ask 🤦🏻‍♀️
just try ha my luck ~
Ever17 2025-03-29 21:02:09
依家ai消息下下都震撼彈咁
有啲想知多啲
Ever17 2025-03-30 06:20:10
開始明點解要證如果呢個係cyclic extension of degree n/cyclic extension with degree p,咁就會有root解x^p - a同x^p -x -a,一切都係要為solvable by radical做準備
Ever17 2025-03-30 06:20:36
Extension field就會有
Ever17 2025-03-31 00:29:34
已經睇完solvable <=> solvable by radical(core argument都係Galois correspondence)
我咁估:
剩返落嚟就係要喺F中Construct 一個quintic polynomial,只要佢Galois group is of order 120,咁佢就必然要係S5,又或者話佢Galois group係A5,咁佢就係not solvable,換言之唔可以透過自身同加插啲根式元素span出嚟(減同除係+ inverse同* inverse),換言之就係無general solution
問題只係剩番要搵irreducible quintic polynomial有order 120
當初俾五次方程式以上無公式解水咗入嚟,後來先發現原來Galois correspondence先係重點
Ever17 2025-03-31 00:31:11
終於完
Ever17 2025-03-31 00:41:49
但係我依家咁睇,其實佢係話唔可以透過根式base field元素同base field自身元素搵出嚟,冇話冇其他方法喎。雖然我諗唔到除咗加減乘除同根式,同類似newton-rhapson之外,人仲有無其他方法可以搵根
Ever17 2025-03-31 00:43:33
三年了 終於完咗數學其中一樣
Ever17 2025-03-31 00:53:17
Module theory同category theory有需要睇先再睇,可以完啦
Ever17 2025-03-31 01:22:12
Proof: 任何有三隻real root同兩隻conjugate root嘅irreducible polynomial都係S5
因為如果該group中係用一隻5-cycle同2 cycle generate嘅就係S5,所以存在兩隻conjugate root互換
[F(alpha1, …, alpha 5): F],因為irr就係min polynomial and by tower law,hence 5| [F(alpha1, F] ,hence by correspondence, and by Cauchy,至少有唔係e嘅element of order 5 generate 5次返到e(ie, 5 cycle)
QED
Ever17 2025-03-31 01:24:58
呢五隻唔可以重覆
Ever17 2025-03-31 01:25:33
F做Q
Ever17 2025-03-31 01:32:44
Real root => Real/Rational
Ever17 2025-03-31 01:36:16
Proof: 任何有三隻R/Q root同兩隻conjugate complex root in C/R 嘅irreducible separable polynomial都係S5
因為如果該group中係用一隻5-cycle同2 cycle generate嘅就係S5,所以存在兩隻conjugate root互換
Q(alpha1, …, alpha 5): Q],因為irr就係min polynomial and by tower law,hence 5| [Q(alpha1, Q] ,hence by correspondence, and by Cauchy,至少有唔係e嘅element of order 5 generate 5次返到e(ie, 5 cycle)
QED
Ever17 2025-03-31 01:38:30
Polynomial over Q
Ever17 2025-03-31 02:07:18
5|[Q(alpha1, …, alpha 5): Q]
Ever17 2025-03-31 02:20:48
不過咁講,Galois點解知道要將搵extension of field變咗做根map根嘅automorphism嘅group,可能佢見到以前2-4次方程都牽涉開根號係類似循環群,定係從root of unity諗到abelian group?從而諗到嘅?點諗?
膠智的kai龍 2025-03-31 02:22:07
睇完Galois可以同ext tor開戰
Ever17 2025-03-31 02:22:40
真係怕
膠智的kai龍 2025-03-31 02:23:16
我已經唔記得哂
Ever17 2025-03-31 02:23:37
如果俾我諗,我一世都associate唔到兩樣野有乜關係?
Ever17 2025-03-31 02:26:27
我見到後面仲有啲咩representation theory,唔好搞啦返analysis算
Ever17 2025-03-31 02:30:27
要做返啲exercise,我心滿意足
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞