[數撚圍爐區] 將一個波分成五份, 然後砌兩個同原本一樣的波的鬼故事 (108)

膠智的kai龍

696 回覆
0 Like 10 Dislike
大水牛,PhD 2025-03-20 20:24:20
Word + excel
夢追人 2025-03-20 21:11:17
忒修斯之船 2025-03-20 21:42:13
手一黏便緊(UTC+9 2025-03-20 22:35:27
用開md
忒修斯之船 2025-03-21 04:52:53
忒修斯之船 2025-03-21 05:04:40
膠智的kai龍 2025-03-21 05:04:51
大水牛,PhD 2025-03-21 06:03:08
Algebra姐係y=x^2 個d
膠智的kai龍 2025-03-21 06:17:39
膠智的kai龍 2025-03-21 06:18:53
大水牛,PhD 2025-03-21 06:23:48
係arithmetic
泰國 2025-03-21 13:57:36
膠智的kai龍 2025-03-21 14:00:42
Ever17 2025-03-21 21:23:58
竟然會有funamental theorem of algebra
analytic proof只見過d Alembert one同Cauchy integral formula嘅corollary

但Algebra proof真係第一次見,一定要睇
Ever17 2025-03-22 02:38:30
當年d Alembert同Gauss無topology 呢啲工具但都好犀利
米拉·瓦勒里 2025-03-22 08:57:00
CCCP 2025-03-22 12:14:53
膠智的kai龍 2025-03-22 12:47:37
Ever17 2025-03-22 14:01:25
又交返個波俾我
證p-group has all its p subgroup, order p, p^2,…p^k-1
程式猿 2025-03-22 17:23:41
泰國 2025-03-22 18:11:51
膠智的kai龍 2025-03-22 18:41:17
唔係sylow d朋友?
Ever17 2025-03-22 19:41:51
係,首先假設R[i]對上仲有個finite extension E,而K就係嗰個finite extension用automorphism集合,R[i]-E-K
做做下就證到有個entire Galois group有2-Sylow subgroup存在,咁Gal(K/R) 就會係2^k,但仲有odd part。不過odd當中irreducible polynomial嘅degree有1(by IVT, all odd degree has one real root, hence only possible degree of irreducible polynomial is 1,但1,其實就等於喺R,所以其實係冇)。
證埋呢度(by induction, center, correspondnece)就可以話存在quadratic extension F,但extend嘅元素其實都係屬於R[i],因為all positive real number has root and complex number has root as well,所以F = R[i],一路用呢個argument,K=R[i],咁頭先R[i]-E-K=R[i]就要令E都係R[i],i.e. 所有arbitrary finite extension都係佢自己,咁R[i]就係algebraic closure of R,every polynomial of R has a root in R[i],i.e. C
Ever17 2025-03-22 19:54:13
所以用到少少analysis,但係呢個proof第一次見
忒修斯之船 2025-03-23 23:15:27
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞