[DS141] 點做 linear regression?

164 回覆
28 Like 3 Dislike
2022-07-08 01:46:04
做緊data scientist
但睇唔明你堆野
2022-07-08 02:05:05
你可以先 review 咗 linear algebra + optimization 然後再望返呢個 post. 因為 householder transform 對 undergrad 嚟講都算 advanced, 小妹有諗住 skip 埋呢 part, 但 skip 咗就好似 black box 咗 QR factorization 嘅原理
2022-07-08 02:18:52
你只係講緊用咩方法計(X'X)^{-1}
我詳細解吓錯係邊: 計(X'X)^{-1} 即係先計呢 inverse matrix 再用 inverse matrix 乘返 t(X)*y, 我提嘅方法並唔係計 inverse matrix 嘅 alternative,
所以解 normal equation 並唔需要計 (X'X)^{-1}
唔好再誤人子弟啦

另外呢位巴打 sdv 乜鳩柒 confused 咗 quasi-newton method 同埋 newton-raphson method 佢段自制 code 用 BFGS 係 quasi-newton 同佢口入面講嘅 newton-raphson 唔同. 另外我講緊 gradient descent 係 first order method, 點解 confuse 又 confuse? 其實 sdv 乜柒都唔知自己講緊啲乜, 不過先等我譯去英文同同事 share 花生先
2022-07-08 20:53:20
你有閱讀障礙?
"gradient descent, newton method, quasi-newton method (e.g. BFGS)"
我咪話BFGS is an example of quasi-newton method

我係話有closed form solution 做咩要用numerical method which include first order (gradient descent) 同second order (newton, quasi-newton) method

我見你誤人子弟先出聲
2022-07-08 20:57:53
同埋我幾時有講newton-raphson
2022-07-08 21:10:55
你理解下咩叫closed form solution先啦
2022-07-08 21:18:25
勸你唔好睇太多
2022-07-08 21:44:04
我理解用pinv 應該主要都係因為佢比QR numerically stable?
2022-07-08 21:55:27
純數撚剩係識證條normal equation點嚟
2022-07-08 23:05:30
點計個H[j]係乜野?
2022-07-08 23:31:59
仲有
係唔知error 係咩distribution下
用gauss markov theorem 證明ols estimator of linear model 係best linear unbiased estimator (blue)

知道error 係normal 既情況下
用cramer rao lower bound 證明ols/mle estimator of linear model 係 best unbiased (including linear and non-linear) estimator

呢d先係linaer regression有趣之處
2022-07-08 23:49:58
留名學習
2022-07-09 04:42:58
SVD 比 QR 更加 stable, 最直接一個原因係 SVD 可以 handle rank deficiency 而 QR 唔得. 但問題 pinv (即係用 SVD) 係比 QR 慢好多
2022-07-09 04:45:33
點都唔夠 sdv 乜鳩柒咁無知以為先計 inv(Gram(X)) 再乘 X'*y 咁蠢, 唔識數學又喺度出風頭又唔敢自己開 post
2022-07-09 04:46:27
Householder transform matrix, 係一個 rotation matrix
呢個H[j]乘落 X 度會進行動態清零
2022-07-09 04:47:54
比 sdv 唔識串騎劫咗啦, 咁多嘢講唔自己開 post 嘅廢物, 我懷疑佢連 svd 同埋計 inverse 要用幾多 flops 都唔知
2022-07-09 05:06:28
根據 sdvsvsdav 嘅神邏輯: 用 QR decomposition = 計 inv(gram(X)) 再乘返埋. 然後小妹就 prove 俾你睇有咩唔同:
X = QR
Gram(X) = t(X)*X = t(QR)*(QR) = t(R)*R
inv(Gram(X)) = (t(R)*(R))^{-1}
事實我地係冇計 inv(Gram(X)) 呢個 matrix
反而直接 plug 落去
Gram(X)*b = t(X)*y
t(R)*(R)*b = t(R)*t(Q)*y
R*b = t(Q)*y
你係唔需要計 R 嘅 inverse, 而係 forward substitution.
sdvsvsdav 係咪真係以為要計 inverse matrix 咁 on9? 真係 undergrad 冇讀 numerical methods? 不如你教下我 inverse matrix 計咗係邊啦
2022-07-09 05:09:37
sdvsvsdav 呢個空白 account 上連登 然後專門 mon 住 econ/stat post 嚟 show-off, 點解唔敢自己開 post 呢? 因為佢連 linear algebra 都搞唔掂
2022-07-09 07:38:18
屌我想學野呀
2022-07-09 13:38:04
留名跟 sdv...連名都打唔好嘅人學嘢, 佢好似連 general 嘅 neural network 同埋 feedforward network 都未分清, 以為 neural network = multilayer 嘅 logistic regression.


統計學會唔會俾machine learning收皮?
- 分享自 LIHKG 討論區
https://lih.kg/bcsvBLV

先唔講佢連 neural 同 neutral 呢個簡單英文水平啦 究竟喺一個 Boltzmann machine 點樣 "seems to be a nested generalized linear model" ? 小妹就係真係唔明啦, 不過好明顯佢唔係 stat/ml 嘅 practitioner
2022-07-09 13:44:10
小妹懷疑 sdv...連名都打唔好嘅人唔知咩係 generalized linear model (GLM), 其實用 multilayer 嘅 feedforward neural network 可以做到 beta regression, 但 beta regression 並唔係 GLM, 只係類似 GLM, 請問 neural network (限定喺 regression 上) 又點會係 nested GLM? 連 GLM 都學唔好都夠膽 mon 住連登 stat post 喺度泥漿摔角?
2022-07-09 14:05:03
佢自稱data scientist,印象中佢睇嘅econ書係工具書居多
2022-07-09 15:04:29
如果正經討論冇乜所謂, 佢係嗰種孔乙己 type
#25 幾有趣, 呢條 sdv 柒頭講到買 index fund 好似先要讀過 MPT 知道 diversification 係咩咁. 完全誤解咗上一個 comment 意思.

之後下一個 comment 巴打講解幾詳細, 呢條 sdv 粉皮又彈出嚟 show-off 指正話最新點點點好似啲亞氏保加症兒童咁


大學想揀Econ嘅同學,有咩想問可以入嚟問 (2)
- 分享自 LIHKG 討論區
https://lih.kg/aRqgRQV
2022-07-09 15:24:50

以前post過

工唔工具睇你點define
mwg 都可以話係工具書
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞