Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
可以
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
其實要製造呢D function好簡單: 求其拎個differentaible function, 如果佢個derivative is not continuous的話, 個derivative就會係counter example
個po推得咁快
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
其實要製造呢D function好簡單: 求其拎個differentaible function, 如果佢個derivative is not continuous的話, 個derivative就會係counter example
你讀Analysis果陣就會知點解
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
其實要製造呢D function好簡單: 求其拎個differentaible function, 如果佢個derivative is not continuous的話, 個derivative就會係counter example
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra
Consider f=0 if rational, =1 if irrational
我都係咁諗,不過搵唔到value in(0,1)咪做唔到個conclusion
但係條theorem holds for constant function wo
constant function本身continuous架啦
I mean, 所以攞個value 係inclusive
即係 [f(a), f(b)] assuming f(a)<f(b)
sin(1/x)得唔得
下年anal要靠你carry了
唔知撞唔撞時間 諗緊要anal定bra
bra係咩?
algebra