其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()

其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
https://github.com/syhw/wer_are_we
唔係啦
好多人做HMM + DNN/BLSTM/CNN
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
幾搞笑,
用RF做feature selection 再用svm
直接用RF唔好咩![]()
anyway 係幾有趣
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
冇時間睇哂,只係睇abstract
Rather, we make predictions based on the entire set of plausible models,
with contributions of models weighted by the models’ predictive value. -> 即係ensemble learning? 好似見到有AIC, 係唔係用AIC 去weight? Hierarchical model 同ensemble 有d分別,但係ensemble 都有Bayesian 版
點用Bayesian 做GLM -> 咪又係寫低個likelihood做MLE / 用MCMC去evaluate 個posterior
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
幾搞笑,
用RF做feature selection 再用svm
直接用RF唔好咩![]()
anyway 係幾有趣
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
![]()