其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
https://github.com/syhw/wer_are_we
唔係啦
好多人做HMM + DNN/BLSTM/CNN
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
幾搞笑,
用RF做feature selection 再用svm
直接用RF唔好咩
anyway 係幾有趣
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
冇時間睇哂,只係睇abstract
Rather, we make predictions based on the entire set of plausible models,
with contributions of models weighted by the models’ predictive value. -> 即係ensemble learning? 好似見到有AIC, 係唔係用AIC 去weight? Hierarchical model 同ensemble 有d分別,但係ensemble 都有Bayesian 版
點用Bayesian 做GLM -> 咪又係寫低個likelihood做MLE / 用MCMC去evaluate 個posterior
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
未睇內文
竟然用SVM咁有趣
NLP己經冇人用
(雖然我唔知佢classify d 咩)
幾搞笑,
用RF做feature selection 再用svm
直接用RF唔好咩
anyway 係幾有趣
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右
其實反而想知 係唔係就算FYP 跟某個老細,佢收你既機會都未必提升好多 唉好想跟自己老細 搞掂MPHIL先走..但我都係2ND UP左右