求救…召喚數學師

58 回覆
3 Like 4 Dislike
2024-11-17 04:27:32
同上一條有啲似不過我唔想用binomial 廢事寫
不過的確可以試下, 都係一個approach 💀🙏
2024-11-17 04:31:21

0^2 = 0, 0 mod 4 = 0
1^2 = 1, 1 mod 4 = 1
2^2 = 4, 4 mod 4 = 0
3^2 = 9, 9 mod 4 = 1

我直接寫咁o5ok

Since numbers larger than 4 simply repeat the same behavior modulo 4, we don’t need to check numbers like 5, 6, 7, 8, etc. They behave exactly the same as 1, 2, 3, and 0 (respectively) modulo 4.

because 5 and 1 are congruent modulo 4 (5 ≡ 1 mod 4).
because 6 and 2 are congruent modulo 4 (6 ≡ 2 mod 4).
because 7 and 3 are congruent modulo 4 (7 ≡ 3 mod 4).
And so on …
2024-11-17 04:31:48
Sure, let's prove why squares of integers modulo 4 can only be 0 or 1.

### Proof:

Consider any integer \( n \). When we take its square \( n^2 \), we need to look at all possible residues (remainders) of \( n \) modulo 4.

An integer \( n \) can be congruent to 0, 1, 2, or 3 modulo 4. Let's analyze each case:

1. **Case 1: \( n \equiv 0 \pmod{4} \)**
\[ n = 4k \, \text{for some integer} \, k \]
\[ n^2 = (4k)^2 = 16k^2 \equiv 0 \pmod{4} \]

2. **Case 2: \( n \equiv 1 \pmod{4} \)**
\[ n = 4k + 1 \]
\[ n^2 = (4k + 1)^2 = 16k^2 + 8k + 1 \equiv 1 \pmod{4} \]

3. **Case 3: \( n \equiv 2 \pmod{4} \)**
\[ n = 4k + 2 \]
\[ n^2 = (4k + 2)^2 = 16k^2 + 16k + 4 \equiv 0 \pmod{4} \]

4. **Case 4: \( n \equiv 3 \pmod{4} \)**
\[ n = 4k + 3 \]
\[ n^2 = (4k + 3)^2 = 16k^2 + 24k + 9 \equiv 1 \pmod{4} \]

### Summary:
\[
\begin{aligned}
&\text{If} \; n \equiv 0 \pmod{4}, \; n^2 \equiv 0 \pmod{4} \\
&\text{If} \; n \equiv 1 \pmod{4}, \; n^2 \equiv 1 \pmod{4} \\
&\text{If} \; n \equiv 2 \pmod{4}, \; n^2 \equiv 0 \pmod{4} \\
&\text{If} \; n \equiv 3 \pmod{4}, \; n^2 \equiv 1 \pmod{4} \\
\end{aligned}
\]

As we see, the possible results for \( n^2 \) modulo 4 are always 0 or 1, proving the statement.

If you have more questions or need further clarification, let's dive in! 😊
2024-11-17 04:37:07
…叫佢gen 啲 readable text 好啲.. 咁好難睇
2024-11-17 04:46:25
2024-11-17 05:03:37
姐係寫呢個包埋n > 4 個d cases? 算係唔用MI,用分case 做咁,哦4k +1 包埋5, 4k+2 包埋6 咁 , for some integer k, okok 又學撚到

Btw 呢個咩AI嚟 兄弟💀🙏, gpt 4-o?
2024-11-17 05:15:52
咪所有數除4餘數係0,1,2,3 , 呢個寫法好常用
2024-11-17 06:22:33
copilot
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞