求救…召喚數學師

58 回覆
3 Like 4 Dislike
2024-11-16 21:00:38

part c 到底點計? 有冇人諗到
2024-11-16 21:01:59
2024 仲唔識用chatgpt
2024-11-16 21:04:29
試下1+2024
2024-11-16 21:11:21
2024-11-16 21:16:39
1 ≡ 1
12 = 1*10+2 ≡ 1*1+2 = 3
123 = 12*10+3 ≡ 3+3 = 6
1234 = 123*10+4 ≡ 6+4 = 10
2024-11-16 21:17:20
12345678910111213.....20232024 (mod9)
=1+2+3+4+5+6+7+8+9+1+0+1+1+....+2+0+2+4 (mod9)
=1+2+3+4+5+6+7+8+9+10+11+12+.....+2024 (mod9)
=(1+2024)*2024/2 (mod9)
=2049300 (mod9)
=2+0+4+9+3+0+0 (mod9)
=18 (mod9)
=0
2024-11-16 21:17:42
1 2 3 4 5 6 7 8 9
除以9嘅remainder係
1 2 3 4 5 6 7 8 0

呢個pattern 會一直重覆
2024-11-16 21:19:49
唔係summation …係成個數 123456789101112…去到2024
2024-11-16 21:19:52
我都係咁諗
2024-11-16 21:20:17
睇唔出同part c solution嘅關系
2024-11-16 21:20:48
mod 9入面可以拆開佢做每個數獨立加埋 (part b)
2024-11-16 21:20:53
你part b咪prove左,每個digit 都可以加埋mode9
2024-11-16 21:22:04
Part a 咪引導緊你囉,諗下人地點解係同一題啦
10÷9, 100÷9, 1000÷9... 嘅remainder係一樣
所以
12345...20232024 (mod 9)
=1+2+3+4+5...+2023+2024 (mod 9)
2024-11-16 21:23:35
可能就係睇唔明先解唔到
2024-11-16 21:23:49
人地part a同part b都係引導緊佢點做part c
條傻仔咁都諗唔明
2024-11-16 21:28:31
Ok I c 3q
2024-11-16 21:29:15
part a都已經係好大提示, part b直頭係話比你知道可以咁做
2024-11-16 21:29:18
小學奧數
2024-11-16 21:37:03
明了明了 使唔使咁串呢大哥?
2024-11-16 21:44:35
wtf 我睇唔明 完全無見過
2024-11-16 21:54:13
你連小學生都不如
2024-11-16 21:54:39
無讀呀奧數呀Ching
2024-11-16 21:55:02
無讀過奧數呀Ching
2024-11-16 21:56:40
你都係
2024-11-16 21:57:59
To solve part (c), we need to find the remainder of the large number  when divided by 9. Instead of adding all the digits directly (which is impractical), we can use properties from part (b) of the question: the remainder of a number modulo 9 is equal to the remainder of the sum of its digits modulo 9.

Step-by-Step Solution:

1. Break Down the Problem:
The number  is formed by concatenating all integers from 1 to 2024. We need to calculate the sum of all the digits that appear in these numbers and find that sum modulo 9.
2. Analyze Digits from 1 to 9:
For the numbers 1 to 9, each digit appears once. The sum of the digits is:

\( 45 \equiv 0 \pmod{9} \).
3. Analyze Digits from 10 to 99:
• Tens Place: The digits 1 to 9 appear 10 times each in the tens place across all numbers (e.g., 10-19 has ‘1’ as the tens digit 10 times). The sum contributed by the tens place is:

\( 450 \equiv 0 \pmod{9} \).
• Units Place: Each digit from 0 to 9 appears 9 times in the units place for each group (e.g., 10-19, 20-29, …, 90-99). The sum for one group of 10 numbers is:

\( 405 \equiv 0 \pmod{9} \).
Therefore, the sum of the digits from 10 to 99 is also \( \equiv 0 \pmod{9} \).
4. Analyze Digits from 100 to 999:
This can be broken down similarly into hundreds, tens, and units places:
• Hundreds Place: Each digit from 1 to 9 appears 100 times. The sum is:

\( 4500 \equiv 0 \pmod{9} \).
• Tens and Units Places: The sum for each is calculated as for the tens and units places in the range 10-99, and they contribute \( \equiv 0 \pmod{9} \).
5. Analyze Digits from 1000 to 2024:
• Thousands Place: The digit ‘1’ appears 1000 times (for numbers 1000-1999), and the digit ‘2’ appears 25 times (for numbers 2000-2024).

\( 1050 \equiv 6 \pmod{9} \) (since ).
• Hundreds, Tens, and Units Places: These can be analyzed similarly to previous cases, contributing \( \equiv 0 \pmod{9} \).

Final Calculation:

The main non-zero contribution comes from the thousands place. Therefore, the sum of all digits from 1 to 2024 modulo 9 is:
\[
6 \pmod{9}
\]

Conclusion:

The remainder when the number  is divided by 9 is 6.
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞