呢個可以算係monte carlo simulation
不過冇Markov chain, 通常係你要generate個d random sample本身係好難直接describe到先要用個Markov chain黎gen
樓主呢個example本身個setting夠簡單其實有closed-form formula:
中獎率p既話抽n次中k次既機率係: (n choose k)*p^k*(1-p)^(n-k)
平均中獎次數係: n*p
variance係: n*p*(1-p), standard deviation係sqrt(n*p*(1-p))
n = 500, p = 0.0316時個平均數係15.8, 而你sim出黎同sample夠多時會好接近因為law of large number
sd係3.9116
事實上本身個distribution係binomial, 我估R入面應該就有d function可以直接用黎睇binomial distribution
Btw, 我唔知R會唔會自動parallelize d loop (如果發覺冇咩data dependency既話)
一般黎講loop本身係好sequential既operation, 有data dependency既時候parallelize唔到 (你當係用唔到GPU或者multi-thread, 或者難d用到)
所以呢個example黎講可能你直接gen一個length 100萬既vector, 每格係uniform distribution in [0, 1], 之後再睇返個binomial distribution既cdf轉返d entry做中獎次數
咁既話可能會快d因為d operation都可以run in parallel