點證,一一映射的解析函數,其一階導數不為0?

ThomasYoung

15 回覆
3 Like 1 Dislike
ThomasYoung 2025-03-01 21:42:45


就係依條的part(a。
桜空もも 2025-03-01 22:03:47
反證
Ever17 2025-03-01 22:09:09
我前幾日睇完咗estimation lemma,距離complex analysis邁進了一步
ThomasYoung 2025-03-01 22:23:31
具體點證?我試左幾日,做來做去都做唔到。
中山大笨象 2025-03-01 22:52:58
問AI
飄移巴士 2025-03-01 23:23:19
唔識rigorious prove ,但個思路應該係assume there exist z0 such that f'(z0) = 0. 而conplex function d 到一次就可以d無限次(又或者用題目 f 係 analytic). f'(z0) = 0 = f''(z0) = ... = f^無限次(z0). 即係話響z0 附近嘅點(i.e. w) , f(z0) = f(w) , but z0 =/= w. contradict to f is one to one.
飄移巴士 2025-03-01 23:33:41
好似可以用Taylor Series Expansion去寫 f(w1) = 得第一個term of Taylor Series Expansion keep 到 = f(z0)
西野實瀨 2025-03-08 07:30:46
Assume f’(z)=0
f(z) = c for any constant C.
So f(z) is non a one to one function which is contraindicated.
.’. f’(z)=/=0 🙏🏻
西野實瀨 2025-03-08 07:38:44
Part b

If g(w)=f-1(w)
So f(g(w))=w
differentiate both wrt w
f’(g(w))•g’(w)=1
g’(w)= 1/(f’(g(w))
馬交FD麻鳩煩 2025-03-08 07:41:15
上邊冇寫“解”,全部零分
成個地球都係我 2025-03-08 14:02:52
點解你地可以甘勁,我睇唔明
Poincare-Hopf 2025-03-09 18:51:08

太耐無做,我諗應該係咁
咩係越位 2025-03-09 19:43:15
v唔係constant會唔會影響m distinct roots
應該要argue for small enough |w| ? (仲細過epsilon)
咩係越位 2025-03-09 20:21:24
有個圖像啲嘅諗法,未必係答題會用
照例WLOG, f(0)=f'(0)=0
=> f(z) = ak z^k + ak+1 z^(k+1) + ... for some integer k >= 2

For small enough r, the z^k term dominates such that f maps the circular path
{ r e^(i theta) : 0 <= theta < 2pi }
to a loop going around the origin k >= 2 times, as theta goes from 0 to 2pi

=> Such image loop must intersect itself
=> Contradict with f being one-to-one
Poincare-Hopf 2025-03-09 20:24:37
你可以喺個disc 入面fix 一個w_0.
只要v(w_0) 唔係0, 咁w_0 就有m個distinct roots, 每個root 都只係差個角度, 所以仲喺個disc 入面
吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞