未睇文,不過之前睇過d鬼佬講CU core 個雙發射 執行方式又變返舊時個方式(太深有d唔明)
But, as with all dual-issue configurations, there is a trade-off involved. The SIMDs can only issue a second instruction when AMD’s hardware and software can extract a second instruction from the current wavefront. This means that RDNA 3 is now explicitly reliant on extracting Instruction Level Parallelism (ILP) from wavefronts in order to hit maximum utilization. If the next instruction in a wavefront cannot be executed in parallel with the current instruction, then those additional ALUs will go unfilled.
This is a notable change because AMD developed RDNA (1) in part to get away from a reliance on ILP, which was identified as a weakness of GCN – which was why AMD’s real-world throughput was not as fast as their on-paper FLOPS numbers would indicated. So AMD has, in some respects, walked backwards on that change by re-introducing an ILP dependence.
We’re still waiting on more information from AMD outlining why they made this change. But dual-issue is typically a cheap way to add more throughput to a processor design (you don’t have to do all the instruction tracking required for a fully separate Dual Compute Unit), and it can be worthwhile tradeoff if you can ensure you’ll be able to dual-issue most of the time. But it means that AMD’s real-world ALU utilization rate is likely lower on RDNA 3 than RDNA 2, due to the bubbles from not being able to dual-issue.
https://www.anandtech.com/show/17638/amd-reveals-radeon-rx-7900-xtx-and-7900-xt-first-rdna-3-parts-to-hit-shelves-in-december
睇下佢driver可唔可以盡量塞多爆個CU, Ampere 都係咁,好似得computing先有接近2x performance