from pyspark import SparkFiles
from pyspark import SparkContext
from pyspark.sql import functions
import pyspark.sql.functions #import avg, col, udf
from pyspark.sql import SQLContext
from pyspark.sql import DataFrame
from pyspark.sql.types import *
import json
import urllib3
import chardet
import requests
aapl_href="<Yahoo Finance download link href>"
df_aapl= spark.createDataFrame(pd.read_csv(aapl_href))
import numpy as np
import pandas as pd
from pyspark import SparkFiles
from pyspark import SparkContext
from pyspark.sql import functions
import pyspark.sql.functions #import avg, col, udf
from pyspark.sql import SQLContext
from pyspark.sql import DataFrame
from pyspark.sql.types import *
import json
import urllib3
import chardet
import requests
aapl_href="<Yahoo Finance download link href>"
df_aapl= spark.createDataFrame(pd.read_csv(aapl_href))
import numpy as np
import pandas as pd
import json
import urllib3
import chardet
import requests
ticker_list = ["AAPL","AAL","A","SPY"]
url_lsit=[]
for i in ticker_list:
ticker_list_concat = 'https://query1.finance.yahoo.com/v7/finance/download/' + str(i) + '?period1=1624307137&period2=1655843137&interval=1d&events=history&includeAdjustedClose=true'
tickerlist.append(ticker_list_concat)
urlfile = requests.get(tickerlist)
#Create data frame form reuqesting URL
df = pd.read_csv(urlfile)
df.to_csv(r'C:\Users\Download\' +str(i) + '.csv')