其實呢題完全唔需要cyclic quad,cyclic quad係將成件事複雜左
條題目本身已經幫你plan左(b),(c),(d)都係用中三知識去做,let x=<PAM
用sin(x)同cos(x)去計就完成,最重要係睇到邊隻角係90度
(b) GA=125(distance formula),GP=radius=75(都係distance formula)
PA=100(pyth. thm)
cos(x)=4/5 sin(x)=3/5
PQ垂直於GA(chord property或congruent triangle),所以<M=90度
MA/100=cos(x)=4/5, MA=80,全條125所以GM=45
最尾section formula, M=(110,76)
由此至終無理過PA定QA係vertical,甚至唔重要唔需要知
(c) AM is angle bisector of <PAQ(chord property或congruent triangle)
Let X be centre of inscribed circle, X must be on AM and M must lie on inscribed circle(by defination of in-centre and inscribed circle)
Let P' on PA and Q' on QA tangent to inscribed circle
Let MX=XP'=r (radius)
XA=80-r
XP'/XA=sin(x), r/(80-r)=3/5, r=30
MX=30, XA=50
最尾section formula X=(128,52)
無假設過inscribed circle 穿過M,而係因為AM係angle bisector所以M一定要on inscribed circle及X一定on MA
(d) Let circumcentre be Y,
AM is perpendicular bisector(chord property或congruent triangle)
Y must be on AM
Let P'' on PA such that YP'' is perpendicular bisector of PA
因為PA=100(proved),所以P''A=50
YA=radius of circumcircle
P''A/YA=cos(x)=4/5
50/YA=4/5
YA=62.5
無假設circumcircle touch G,亦唔需要知,因為YA明顯係radius of circumcircle
因為r:YA=30:62.5=/=1:2
所以area ratio is not 1:4