Geometry同topology係唔係唔同野?
S^2={(x,y,z) is element of R^3, x^2+y^2+z^2=1}
咁topology上佢係compact set(closed and bounded)。
所以 f: R^2--> S^2 唔係continous 所以唔係homeomorphism.
但係我睇Differential Geometry(Do Carmo)書,佢話S^2 係regular surface,因為f:U-->S^2, S^2就係homeo.
U:={(x,y) is element of R^2, x^2+y^2<1}