計劃進修PhD/Research討論區(22) Research is truth seeking

1001 回覆
11 Like 2 Dislike
2017-06-08 02:24:30







2017-06-08 07:13:28
2017-06-08 09:17:01
2017-06-08 09:52:39

2017-06-08 10:08:29


2017-06-08 10:13:50



2017-06-08 11:18:57

關呀

我諗到就係chok head=1 tail=0
跟住乘一個
(110000....
011000.....
..................
100......001)既matrix A
跟住計A^n 不過好似好濕濟
2017-06-08 11:27:10

關呀

我諗到就係chok head=1 tail=0
跟住乘一個
(110000....
011000.....
..................
100......001)既matrix A
跟住計A^n 不過好似好濕濟

其實就係咁做
不過喺Z_2唔算太難,上面解釋咗點做

唔熟finite field
2017-06-08 11:38:00
我會咁樣formulate個題目
given n, consider A=(Z_2)^n
for (x1,...,xn), define s(x1,...,xn)=(xn,x1,...,x_{n-1})
(其實s只係permutation matrix)

question: for which n, x+s(x)+s^2(x)+...=0 for all x?

繼續
最後打錯咗,個game每一步可以睇成咁:
如果x係initial configuration,咁x+s(x)就係下一步嘅configuration(如果唔明嘅話可以問,我再解釋)
如果寫1做identity matrix, x+s(x)=(1+s)x, 即係每步只係乘同一個matrix
所以問題係:for which n, (1+s)^m x=0 for all x in A, when m is sufficiently large?

答案係if and only if n=2^k for some k
首先一個fact: consider (1+s)^2^k,咁你爆開佢嘅話所有coefficient都係雙數,除咗頭同尾嗰個,呢個用MI就證明到

因為依家個matrix啲entry係Z_2嘅數字,所以當個coefficient係雙數,佢會變咗0,所以(1+s)^2^k=1+s^2^k
但係當n=2^k時,s^2^k=s^n=1,而1+1=0,所以(1+s)^2^k = 0 when n=2^k

另一個case, n唔係2^k咁嘅樣
aim: show that there exists x such that (1+s)^m x is not 0 for infinitely many m
因為當有一步變咗0就代表就game會完,如果aim入面講嘅嘢係存在,咁就game就唔會完

let k be any number with 2^k>n. by剛才嘅argument,(1+s)^2^k = 1+s^2^k
但依個情況n除唔盡2^k,所以1+s^2^k=1+s^l for some l<n(因為s^n=1,l其實只係2^k除以n嘅餘數)
consider x=(1,0,0,...0)
明顯地(1+s^l)(x)唔等於0
以上依家事就對於任何k都啱,即係對於無限個k啱,即係(1+s)^2^k x is not 0 for infinitely many k, QED

2017-06-08 12:03:47
2017-06-08 12:53:34




2017-06-08 13:00:54





我果間QS排名都係50外

2017-06-08 13:02:23





我果間QS排名都係50外


2017-06-08 13:34:31
2017-06-08 13:58:51
2017-06-08 14:15:48

2017-06-08 14:39:59



吹水台自選台熱 門最 新手機台時事台政事台World體育台娛樂台動漫台Apps台遊戲台影視台講故台健康台感情台家庭台潮流台美容台上班台財經台房屋台飲食台旅遊台學術台校園台汽車台音樂台創意台硬件台電器台攝影台玩具台寵物台軟件台活動台電訊台直播台站務台黑 洞